
## 1 Week 12 HOGU: 5.5-5.8, Exam 3 Review

**Problem 1.** Find the domain of each of the following functions. Draw the domain on the number line, then give your answer using interval notation.



**Problem 2.** Your electric bill came in! On your bill you noticed that you were charged \$7 as a base fee, plus \$6 per kilowatt-hour of electricity used up to the first 100 kilowatt-hours. (These numbers were taken from my own electric bill!) After using 100 kilowatt-hours, you notice that the amount you are charged goes up to \$9 per kilowatt-hour. Construct the piecewise function describing the cost C(x), in dollars, that you pay when using x kilowatt-hours



**Problem 3.** State the domain of the following functions:

(a) 
$$f(x) = 4e^{x-1}$$
 $R \circ D \# 1: Ok!$ 
 $R \circ D \# 2: Ok!$ 
 $R \circ D \# 3: Ok!$ 
 $(-9, 9)$ 

(b)  $g(x) = \ln(1-x)$ 
 $R \circ D \# 3: I-X > O$ 
 $R \circ D \# 3: I-X > O$ 

Rules of Donain

1) 4 + 0!2) 1 + 3 + 0!3) 1 + 3 + 0!3) 1 + 3 + 0!

RoD #1: Denominator ≠0! ln(x) ≠0 → e ≠ X → X ≠1

RoD#2: Square root inside  $\geq 0!$   $\times^3 + 8 \geq 0 \rightarrow \times^3 \geq -8$  $\longrightarrow X \geq -2$ 

RoD H3: Loga ithm inside >0! X>0

**Problem 4.** (a) Completely simplify this expression to be in base 6:

$$\frac{36^{x^{2}}}{6^{-4x}} = \frac{(6^{2})^{x^{2}}}{6^{-4x}}$$

$$\frac{36^{x^{2}}}{6^{-4x}}$$

(b) Fully expand the expression using the properties of logarithms:

$$\ln\left(\sqrt[3]{\frac{x^{3}}{e^{2}z^{4}}}\right) = \frac{1}{3}\ln\left(\frac{x^{3}}{e^{2}z^{4}}\right) = \frac{1}{3}\left[\ln\left(x^{3}\right) - \ln\left(e^{2}z^{4}\right)\right]$$

$$= \frac{1}{3}\left[3\ln(x) - \left(\ln\left(e^{2}\right) + \ln\left(z^{4}\right)\right)\right] = \frac{1}{3}\left[3\ln(x) - \ln\left(e^{2}\right) - \ln\left(z^{4}\right)\right]$$

$$= \ln(x) - \frac{1}{3}\ln\left(e^{2}\right) - \frac{1}{3}\ln(z^{4}) = \ln(x) - \frac{2}{3}\ln(e) - \frac{4}{3}\ln(e)$$

**Problem 5.** Solve the following equations for x:

(a) 
$$4^{x+1} = 64$$

$$4^{x+1} = 4^{x+1}$$

• Set exponents equal 
$$x+1=3 \rightarrow [x=2]$$

(b) 
$$\ln(x) + \ln(x-2) = \ln(x+10)$$

$$L_{\lambda}(x(x-2)) = L_{\lambda}(x+10)$$

$$x(x-2) = x+10 \rightarrow x^2-2x = x+10$$

$$x^{2}-3x-10=0$$
  
 $(x-5)(x+2)=0$   
 $x=-2$ ,5  
(c)  $2\cdot 3^{-x}=16$ 

$$h(5) + h(5-2) = h(5+19)$$
  
 $h(5) + h(3) = h(15)$ 

\* X is In exponent... need to take logarithm!

$$- \times \ln(3) = \ln(8)$$

$$= \ln(8)$$

$$= \ln(8)$$

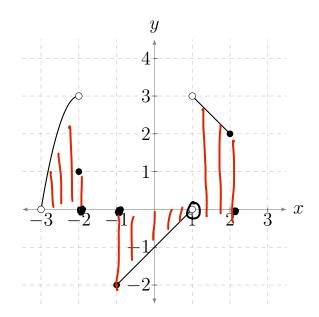
$$= \ln(3)$$

**Problem 6.** Recall that the accumulated value of an initial deposit, P, for t years, at the interest rate r (expressed as a decimal), is

$$A(t) = P\left(1 + \frac{r}{m}\right)^{mt},\,$$

where m represents the number of times the interest is compounded in a year.

If you deposit \$12,000 in this savings account and the interest rate on the account is 7%, how long would it take the savings account to grow to \$25,000? Assure interest is compounded yearly


$$25000 = 12000 (1+.07)$$

$$25000 = 1.07^{t}$$

$$12000$$
• tis in exponent! Take logarithms
$$ln(\frac{25}{12}) = ln(1.07)^{t} = tln(1.07)$$

$$ln(\frac{25}{12}) = t \approx 10.848 \text{ years}$$

## **Problem 7.** Consider the function f(x) below:



(a) State the domain of f(x). Write your answer in interval notation.

$$(-3,-2] \cup [-1,1) \cup (1,2]$$

(b) State the range of f(x). Write your answer in interval notation.

$$[-2,0) \cup (0,3)$$

**Problem 8.** Compute and completely simplify the difference quotient for the function  $g(x) = -\frac{3}{r+1}$ .

(a) 
$$g(x+h) = -\frac{3}{(x+h)+1}$$

**Problem 9.** Compute and completely simplify the difference quotient for the function  $k(x) = \sqrt{2x-5}$ .

(a) 
$$k(x+h) = \sqrt{2(x+h)-5} = \sqrt{2x+2h-5}$$

$$\frac{1}{\sqrt{2}(x+h)-5} = \frac{1}{\sqrt{2}(x+h)-k(x)} =$$

(c) 
$$\frac{k(x+h)-k(x)}{h} = \sqrt{2x+2h-5} + \sqrt{2x-5}$$

$$\frac{2x+2h-5+\sqrt{2x-5}}{\sqrt{2x+2h-5}+\sqrt{2x-5}} = \frac{2}{\sqrt{2x+2h-5}+\sqrt{2x-5}} \frac{1}{x}$$