Math 308: Week-in-Review 12
Shelvean Kapita

Review for the Final Exam - Part 1

1. (Chapter 2) Find the solution to the initial value problem
(a) $2 \sqrt{x} \frac{d y}{d x}=\cos ^{2} y, \quad y(4)=\frac{\pi}{4}$

Check equilibrium solutions

* nonlinear, firtorder, separable *

$$
\begin{aligned}
\int \frac{1}{\cos ^{2} y} d y & =\frac{1}{2} \int \frac{1}{\sqrt{x}} d x \\
\int \sec ^{2} y d y & =\frac{1}{2} \int x^{-1 / 2} d x \\
\tan y & =\frac{1}{2} \cdot 2 \cdot x^{1 / 2}+C=\sqrt{x}+C
\end{aligned}
$$

* Find $C_{*} \quad y(4)=\frac{\pi}{4} \Rightarrow x=4, y=\frac{\pi}{4}$
$\tan \frac{\pi}{4}=\sqrt{4}+C \Rightarrow 1=2+C \Rightarrow C=-1$

$$
\begin{aligned}
\tan y & =\sqrt{x}-1 \\
y & =\tan ^{-1}(\sqrt{x}-1)=\arctan (\sqrt{x}-1)
\end{aligned}
$$

* Check*

$$
\begin{array}{r}
y(4)=\tan ^{-1}(\sqrt{4}-1)=\tan ^{-1}(2-1)=\tan ^{-1}(1) \\
y(4)=\frac{\pi}{2}
\end{array}
$$

(b) $\frac{d y}{d t}+\frac{2 y}{t}=\frac{\cos t}{t^{2}}, \quad y(1)=\frac{1}{2}, \quad t>0$.
fist order linear, nonhomogeneous
$y^{\prime}(t)+p(t) y=g(t) \rightarrow \underset{\text { form }}{\text { standard integrating }}$ factor

$$
\mu(t)=t^{2}
$$

$$
y(t)=\frac{1}{\mu(t)} \int \mu(t) g(t) d t+\frac{C}{\mu(t)}
$$

$$
\begin{aligned}
& \mu(p(t) d t \\
&=e^{\int 2 / t d t} 2 \int y / t d t \\
&=e^{\int 2}=e^{2} \\
&=e^{2 \ln t}=e^{\ln t^{2}}=t^{2}
\end{aligned}
$$

$$
=\frac{1}{t^{2}} \int t^{2} \cdot \frac{\cos t}{t^{2}} d t+\frac{c}{t^{2}}
$$

$$
=\frac{1}{t^{2}} \int \cos t d t+\frac{c}{t^{2}}
$$

$$
y(t)=\frac{1}{t^{2}} \sin t+\frac{C}{t^{2}} \Rightarrow y(1)=\sin (1)+C=1 / 2 \Rightarrow C=1 / 2-\sin (1)
$$

$$
y(t)=\frac{\sin t}{t^{2}}+\frac{\left(\frac{1}{2}-\sin (1)\right)}{t^{2}}
$$

(c) $y^{\prime}+2 y=e^{-2 t}, \quad y(0)=1$.

* first order, linear, nonhomogeneous *

$$
\begin{aligned}
p(t) & =e^{\int 2 d t}=e^{2 t} \\
y(t) & =\frac{1}{\mu(t)} \int \mu(t) g(t) d t+\frac{C}{\mu(t)} \\
& =e^{-2 t} \int e^{2 t} \cdot e^{-2 t} d t+C e^{-2 t} \\
& =e^{-2 t} \cdot t+C e^{2 t} \\
y(0) & =C=1 \\
y(t) & =e^{-2 t}(t+1)
\end{aligned}
$$

$$
\begin{aligned}
* \text { che dk* } y^{\prime}(t) & =e^{2 t}-2 e^{-2 t}(t+1) \\
& =e^{-2 t}-2 t e^{-2 t}-2 e^{-2 t} \\
& =-e^{-2 t}-2 t e^{-2 t} \\
y^{\prime}+2 y & =\left(-e^{-2 t}-2 t-2 t\right)+2 t e^{-2 t}+2 e^{-2 t} \\
& =e^{-2 t}
\end{aligned}
$$

2. (Chapter 1, 2) A tank contains 100 gal of brine in which 50 lbs of salt are dissolved. Brine containing 2 lbs of salt per galon flows into the tank at a rate of 6 gal per min. The mixture, which is kept uniform by stirring, flows out of the tank at the rate of 4 gal per min. Volume $=100+2 t \mathrm{gal}$ (a) Find the amount of salt in the tank at the end of $t$ minutes.

$$
\begin{aligned}
& Q^{\prime}(t)=\text { rate in }- \text { rate out }=\left(2 \frac{\mathrm{los}}{\mathrm{gal}}\right)\left(6 \frac{\mathrm{gal}}{\mathrm{~min}}\right)-\frac{Q(t)}{100+2 t} \frac{\mathrm{lbs}}{\mathrm{gal}} * 4 \frac{\mathrm{gal}}{\mathrm{~min}} \\
& Q^{\prime}(t)=12-\frac{2 Q(t)}{50+t}, Q(0)=50 \text { lbs } \\
& Q^{\prime}(t)+\frac{2 Q(t)}{50+t}=12, Q(0)=50 \Rightarrow \mu(t)=e^{2} \frac{1}{50+t} d t \\
& Q(t)=(50+t)^{-2} \int 12(50+t)^{2} d t+C(50+t)^{-2}=4(50+t)+C(50+t)^{-2} \\
& Q(0)=200+\frac{C}{50^{2}}=50 \Rightarrow \frac{C}{50^{2}}=-150=(-3)(50) \Rightarrow C=(-3)(50) \\
& Q(t)=4(50+t)-\frac{3(50)}{(50+t)^{2}}
\end{aligned}
$$

(b) After 50 mine, how much salt will be in the tank, and what will be the volume of brine?

$$
\begin{aligned}
Q(50)=4(50+50)-\frac{3\left(50^{3}\right)}{4.50^{2}} & =400-\frac{3}{4}(50) \\
& =400-37.5 \\
& =362.5 \mathrm{lbs}
\end{aligned}
$$

3. (Chapter 2) Given the differential equation

$$
\frac{d y}{d t}=y^{3}-2 y^{2}+y=y\left(y^{2}-2 y+1\right)=y(y-1)^{2}
$$

(a) Find the equilibrium solutions
(b) Graph the phase line. Classify each equilibrium solution as either stable, unstable, or semistable.
(c) Sketch the graph of some solutions.
(d) If $y(t)$ is the solution of the equation satisfying the initial condition $y(0)=y_{0}$, where $-\infty<$ $y_{0}<\infty$, find the limit of $y(t)$ when $t$ increases.
(a) $f(y)=y(y-1)^{2}=0 \Rightarrow y=0, y=1$
(b)

(c)

4. (Chapter 2) Find an integrating factor for the equation

$$
m_{y}=3 x+2 y \neq N_{x}=2 x+y
$$

and then solve the equation.

$$
\underbrace{\left(3 x y+y^{2}\right.}_{\mathbf{m}}) d x+(\underbrace{x^{2}+x y}_{\mathbf{N}}) d y=0
$$

$$
\begin{aligned}
& \frac{m_{y}-N_{x}}{N}(x \text { only }) \quad O R \quad \frac{N_{x}-m_{y}}{m}(y-o n l y) \\
& \frac{(3 x+2 y)-(2 x+y)}{x^{2}+x y}=\frac{x / y}{x(x+y)}=\frac{1}{x} \Rightarrow \mu(x)=e^{\int \frac{m_{y}-N_{x}}{N} d x}=e^{\int \frac{1}{x} d x} \\
& =e^{\ln x}=x \\
& \mu(x)=x \\
& x\left(3 x y+y^{2}\right) d x+x\left(x^{2}+x y\right) d y=0 \\
& \Rightarrow \underbrace{\left(3 x^{2} y+x y^{2}\right.}_{m}) d x+(\underbrace{x^{3}+x^{2} y}_{N}) d y=0 \quad\left\{\begin{array}{l}
m_{y}=3 x^{2}+2 x y \\
N_{x}=3 x^{2}+2 x y
\end{array}\right. \text { exact } \\
& F_{x}=M=3 x^{2} y+x y^{2} \Rightarrow F(x, y)=\int M(x, y) d x=\int\left(3 x^{2} y+x y^{2}\right) d x \\
& =x^{3} y+\frac{1}{2} x^{2} y^{2}+h(y) \\
& F_{y}=x^{3}+x^{2} y+h^{\prime}(y)=N \Rightarrow h^{\prime}(y)=0 \Rightarrow h(y)=0 \\
& F(x, y)=x^{3} y+\frac{1}{2} x^{2} y^{2}=C \quad \text { (implicit form) }
\end{aligned}
$$

5. (Chapter 3) Find the general solution of the equation $y^{\prime \prime}+2 y^{\prime}+y=4 e^{-t}$.

$$
\begin{aligned}
& y(t)=y_{c}^{(t)}+y_{p}(t) \quad y_{c}(t)=c_{1} e^{-t}+c_{2} t e^{-t}, y_{p}(t)=A t^{2} e^{-t} \\
& y_{p}^{\prime}=2 A t e^{-t}-A t e^{-t}, y_{p}^{\prime \prime}=2 A e^{-t}-2 A t e^{-t}-2 A t e^{-t}+A t^{2} e^{-t} \\
& y_{p}^{\prime \prime}+2 y_{p}^{\prime}+y_{p}=\left(2 A e^{-t}-4 A A e^{-t}+A y^{-t}\right)+2\left(2 A t e^{-t}-A y^{-t} e^{-t}\right)+A e^{-t} \\
&=2 A e^{-t}=4 e^{-t} \Rightarrow A=2 \quad y_{p}(t)=2 t^{2} e^{-t} \\
& y(t)=c_{1} e^{-t}+c_{2} t e^{-t}+2 t^{2} e^{-t}
\end{aligned}
$$

6. (Chapter 3) Find the form of a particular solution for each of the following nonhomogeneous equal$\begin{aligned} & \text { tons. Do not solve the equation. } \\ & \text { (a) } y^{\prime \prime}+2 y^{\prime}+2 y=e^{-t} \sin t+e^{-t} \cos 2 t\end{aligned} \rightarrow \lambda=\frac{-2 \pm \sqrt{4-4 \cdot 2}}{2}=-1 \pm i$
(b) $y^{\prime \prime}-2 y^{\prime}+y=\underset{\hookrightarrow \text { homogeneous }}{t} t^{t}+t^{2} e^{-t}+e^{t} \cos t+t^{2} \leadsto \lambda=\frac{2 \pm \sqrt{4-4}}{2}=1$ (repeated)
(a) $y_{c}(t)=c_{1} e^{-t} \cos (t)+c_{2} e^{-t} \sin (t)$

$$
y_{p}(t)=t\left[A e^{-t} \cos (t)+B e^{-t} \sin (t)\right]+\left[C e^{-t} \cos (2 t)+D e^{-t} \sin (2 t)\right]
$$

(b)

$$
\begin{aligned}
y_{c}(t)= & c_{1} e^{t}+c_{2} t e^{t} \\
y_{p}(t)= & t^{2}(A+B t) e^{t}+\left(C t^{2}+D t+E\right) e^{-t} \\
& +\left(F e^{-t} \cos t+G e^{-t} \sin t\right)+\left(H t^{2}+I t+J\right)
\end{aligned}
$$

7. (Chapter 3) Find the general solution of the equation
not a quasi-polynomial

$$
\begin{aligned}
& y(x)=y_{c}(x)+y_{p}(x) \\
& y^{\prime \prime}+6 y^{\prime}+9 y=\frac{e^{-3 x}}{1+2 x} \text { * variation of parameter } ß * \\
& y_{c}(x)=c_{1} e^{-3 x}+c_{2} x e^{-3 x} \Rightarrow y_{1}(x)=e^{-3 x}, y_{2}(x)=x e^{-3 x} \\
& y_{p}(x)=u_{1}(x) y_{1}(x)+u_{2}(x) y_{2}(x) \text { where }\left\{\begin{array}{l}
u_{1}(x)=\int \frac{-y_{2}(x) r(x)}{w(x)} d x \\
u_{2}(x)=\int \frac{y_{1}(x) r(x)}{w(x)} d x
\end{array}\right. \\
& u_{1}(x)=\int^{-x e^{-3 x} \cdot \frac{e^{-3 x}}{1+2 x}} d x \\
& W(x)=\left|\begin{array}{ll}
e^{-3 x} & x e^{-3 x} \\
-3 e^{-3 x} & e^{-3 x}-3 x e^{-3 x}
\end{array}\right| \\
& =-\int \frac{x}{1+2 x} d x \quad \begin{array}{l}
u=1+2 x \Rightarrow d u=2 d x \\
x=\frac{(4-1)}{2}
\end{array} \\
& \begin{aligned}
=-\int \frac{(u-1)}{2} \cdot \frac{1}{2} d u & =-\frac{1}{4} \int \frac{u-1}{u} d u \\
& =-\frac{1}{4}(u-\ln |u|)
\end{aligned} \\
& =-1 / 4(1+2 x)+\frac{1}{4} \ln |1+2 x| \\
& u_{2}(x)=\int \frac{e^{-3 x} \cdot \frac{e^{-3 x}}{1+2 x}}{e^{-6 x}} d x=\int \frac{1}{1+2 x} d x=\frac{1}{2} \ln |1+2 x| \\
& y_{p}(x)=-\frac{1}{4} e^{-3 x}(1+2 x)+\frac{1}{4} e^{-3 x} \ln |1+2 x|+\frac{1}{2} x e^{-3 x} \ln |1+2 x| \\
& y(x)=c_{1} e^{-3 x}+c_{2} x e^{-3 x}-\frac{1}{4} e^{-3 x}(1+2 x)+\frac{1}{4} e^{-3 x} \ln |1+2 x|+\frac{1}{2} x e^{-3 x} \ln |1+2 x|
\end{aligned}
$$

