Math 151 - Week-In-Review 5

Topics for the week:

- 3.1 Derivatives of Polynomials and Exponential Functions
- 3.2 The Product and Quotient Rules

3.1 Derivatives of Polynomials and Exponential Functions

1. Compute the derivative of $f(x) = 3x^5 - 4x^2 + 6$.

2. Compute
$$\frac{dg(t)}{dt}$$
 for $g(t) = \frac{1}{3}t^8 - \frac{2}{7t^4} + 6t^{-3}$.

3. For
$$y = \frac{1 + x - 4\sqrt{x}}{x}$$
, find $\frac{dy}{dx}$.

4. Compute the derivative of f with respect to t, $f(t) = \frac{7}{3x^2} - \frac{5}{2x} - \frac{3}{e^{-x}}$.

5. Compute f'(x) for $f(x) = 11e^x + e^{11}x$.

6. Compute g'(z) for $g(z) = \sqrt[5]{z} + 10\sqrt[6]{z^5}$.

7. Given a position function of $s(t) = \frac{(t^3 + 1)(t^2 - t + 1)}{t^4}$, determine the corresponding velocity and acceleration functions.

8. For
$$y = \frac{4}{9}x^3z + 3x^2z^7$$
, compute $\frac{dy}{dx}$ and $\frac{dy}{dz}$.

9. Write the equation for the line tangent to the curve $y = x\sqrt{x} - \frac{9}{2x}$ at x = 4.

10. Find the equation of the line perpendicular to the tangent to the curve $y = x^3 - 4x + 1$ at the point (2, 1). What is the smallest slope on the curve?

11. Determine the values of a and b such that f is differentiable everywhere.

$$f(x) = \begin{cases} x^4 + bx + 2 & \text{for } x \le 0\\ \frac{1}{2}e^x + a & \text{for } x > 0 \end{cases}$$

3.2 The Product and Quotient Rules

12. For
$$y = (1 + x - 4\sqrt{x}) (e^x)$$
, find $\frac{dy}{dx}$.

13. Compute the derivative of $f(x) = ax^{1/3}(x+1) - x^{-3/4}$ with respect to x.

14. Suppose
$$f(2) = 3$$
 and $f'(2) = \frac{1}{4}$, determine $\frac{d}{dx} [xf(x)]$ at $x = 2$.

15. Compute g'(p) for $g(p) = \frac{3e^p}{6p^2 - 8p}$.

16. Given $y = \frac{x^3 - 11}{1 - x^2}$, compute both the first and second derivative of y with respect to x.

17. Differentiate $f(x) = \frac{ax^2}{k^2 - x^2}$ with respect to x. Assume that a and k are positive constants. Identify the values of x for which f(x) is not differentiable.

18. Write the equation of the line tangent to the curve $y = \frac{8}{x^2 + 4}$ at the point (2, 1).

19. The functions f and g that satisfy the properties as shown in the table. Compute the indicated quantity.

x	f(x)	f'(x)	g(x)	g'(x)
0	1	-3	3	5
1	2	9	7	11
2	-5	0	2	10
3	4	-1	-4	8

(a)
$$H'(3)$$
 if $H(x) = (x^3 + 2)g(x)$

(b)
$$\left. \frac{d}{dx} \left(\frac{x^3}{f(x)} \right) \right|_{x=1}$$