1. Given the vectors $\mathbf{a}=<1,-3>$ and $\mathbf{b}=<-3,4>$. Find
(a) The scalar and vector projections of \mathbf{a} onto \mathbf{b}
(b) The scalar and vector projections of \mathbf{b} onto \mathbf{a}
2. Find the distance from the point $(1,3)$ to the line $2 x-3 y-5=0$.
3. Find the distance between the parallel lines $y=2 x+3$ and $y-2 x=9$.
4. Find a Cartesian equation for the following parametric curves. Sketch the curve.
(a) $x=1-t^{2}, y=1-t,-1 \leq t \leq 1$
(b) $x=1+\sin t, y=2+\cos t$
(c) $x=\tan t, y=\cot ^{2} t, \frac{\pi}{6} \leq t \leq \frac{\pi}{3}$
5. An object is moving in the $x y$-plane and its position after t seconds is $\mathbf{r}(t)=<t^{2}+t, t-4>$.
(a) At what time is the object at the point $(12,-1)$.
(b) Does the object pass through the point $(4,8)$?
(c) Find an equation in x and y whose graph is the path of the object.
6. Find a vector equation of the line containing the points $(1,2)$ and $(3,-4)$.
7. Find parametric equations of the line passing through the point $(-1,1)$ and parallel to the vector $\vec{\imath}-5 \vec{\jmath}$.
8. Determine whether the lines $\mathbf{r}(t)=(-4+2 t) \vec{\imath}+(5+t) \vec{\jmath}$ and $\mathbf{r}(t)=(2+3 t) \vec{\imath}+(4-6 t) \vec{\jmath}$ are parallel, perpendicular or neither. If they are not parallel, find their point of intersection.
9. Find the exact value of the expression.
a) $\sin ^{-1}\left(\frac{\sqrt{3}}{2}\right)$
b) $\sin ^{-1}\left(-\frac{\sqrt{3}}{2}\right)$
c) $\cos ^{-1}\left(\frac{1}{2}\right)$
d) $\cos ^{-1}\left(-\frac{1}{2}\right)$
e) $\tan ^{-1}\left(\frac{1}{\sqrt{3}}\right)$
f) $\tan ^{-1}\left(-\frac{1}{\sqrt{3}}\right)$
g) $\sin \left(\arccos \frac{1}{4}\right)$
h) $\cos \left(\arctan \frac{6}{5}\right)$
10. Simplify the expression
(a) $\tan \left(\cos ^{-1} x\right)$
(b) $\sin \left(\tan ^{-1} x\right)$
