Math 151 - Week-In-Review 4

Topics for the week:

- 2.7 Derivatives and Rates of Change
- 2.8 The Derivative as a Function
- J.1 through 2.8 Exam Review

2.7 Derivatives and Rates of Change

1. Write the equation of the line tangent to the graph of $h(x) = 5x - x^2$ at the point (-1, -6).

- 2. The displacement, in feet, of a particle moving in a straight line is given by $y = \sqrt{10 3t}$, where t is measured in minutes.
 - (a) Compute the average velocity over the interval [2, 3].

(b) Compute the instantaneous velocity when t = 2.

2.8 The Derivative as a Function

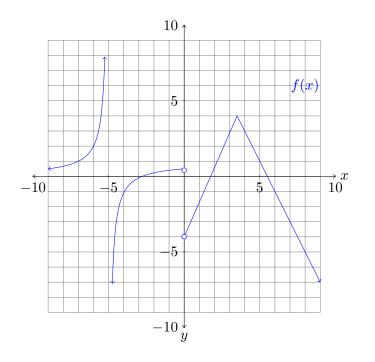
3. Compute the derivative of the function $g(x) = \frac{x}{x-4}$, using the definition of the derivative. Then state the domain of both g(x) and g'(x).

4. Given $y = 4x^2 - 11x + 25$,

(a) show
$$\frac{dy}{dx} = 8x - 11$$
.

(b) Is there any point along the curve where the tangent line is horizontal?

5. Given the graph of f(x) below,



- (a) Sketch the graph of f'(x) using f(x).
- (b) State the values of x at which f(x) is not differentiable.

Exam Review (J.1 - 2.8)

6. Simplify the expression $\tan\left(\arcsin\left(\frac{5x}{8}\right)\right)$

7. Given the points J(0,5) and K(-2,0), compute a vector of length $\frac{1}{2}$ that is in the same direction as \overrightarrow{JK} .

8. Two forces \mathbf{F}_1 and \mathbf{F}_2 act on an object. The force \mathbf{F}_1 has a magnitude of 32 lbs and a direction of 60° counterclockwise from the positive *x*-axis, and \mathbf{F}_2 has a magnitude of 45 lbs and a direction of 120° counterclockwise from the positive *x*-axis. State the resultant force \mathbf{F} .

9. A force is given by a vector $\mathbf{F} = 2\mathbf{i} + 5\mathbf{j}$ and moves an object from the point M(4, 2) to the point N(7, 6). Compute the work done.

10. Compute the angle between the vectors $\mathbf{a} = \langle -2, 9 \rangle$ and $\mathbf{b} = \langle 8, 4 \rangle$.

11. Write a parametric equation of the line passing through the points (12, 5) and (9, -2).

- 12. Determine the parametric equations for the line that passes through the point (3,-1) and is
 - (a) is parallel to the vector $\langle -5, -4 \rangle$.

(b) is perpendicular to the vector $\langle -5, -4 \rangle$.

13. State the slope of the line with corresponding vector equation $\mathbf{r}(t) = \langle 5 - 2t, -8 + 7t \rangle$.

14. Determine whether the lines, $L_1 = \mathbf{r}(t) = (-6 + 2t)\mathbf{i} + (7 - 6t)\mathbf{j}$ and $L_2 = \mathbf{r}(s) = \left(5 + \frac{1}{2}s\right)\mathbf{i} + \left(-8 + \frac{3}{2}s\right)\mathbf{j}$, are parallel, perpendicular, or neither.

15. Evaluate each limit:

(a)
$$\lim_{x \to 6^+} \left(\frac{x+1}{x-6} \right)$$

(b)
$$\lim_{x \to 2\pi^-} (x \csc(x))$$

(c)
$$\lim_{x \to 5} \left(\frac{5-x}{x^2 - 25} \right)$$

16. Evaluate the limit
$$\lim_{x \to 7^+} \left(\frac{|7-x|}{x-7} \right)$$

17. Show that $f(x) = \begin{cases} \sin(x) & x < \frac{\pi}{2} \\ \frac{x}{2} - \frac{\pi}{4} & x \ge \frac{\pi}{2} \end{cases}$ is not continuous at $x = \frac{\pi}{2}$.

18. Determine the values of a and b such that f(x) is continuous over the real numbers.

$$f(x) = \begin{cases} ax^2 - 5x + b & \text{if } x < -1 \\ -\frac{65}{2}x - \frac{39}{2} & \text{if } -1 \le x < 1 \\ bx^3 - 9ax & \text{if } x \ge 1 \end{cases}$$

19. Evaluate the limit, $\lim_{x\to\infty} \frac{3e^{2x}}{2e^{2x} - e^x}$, if possible.

20. Determine the left end-behavior (as $x \to -\infty$) of the function $g(x) = \frac{-\sqrt{3x^4 + 2x^2} + 5}{4x^4 - x^2}$.

21. Evaluate the limit, $\lim_{x \to \infty} \left[\ln(3 + 6x^2) - \ln(x^3 + x - 1) \right]$, if possible.