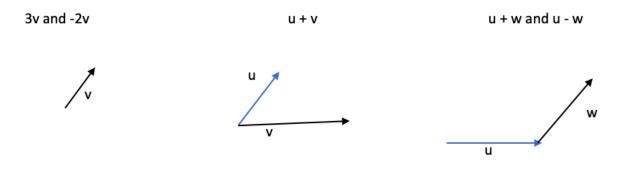


Example 1 (12.1). Let P, Q, and R be the projections of the point S(3, 5, 7) onto xy-plane, yz-plane and xz-plane, respectively. Determine the coordinates of the points P, Q, and R, and compute the distance from the origin to the point S.

Example 2 (12.1). (a) Sketch the graph of $x^2 + y^2 = 9$ in \mathbb{R}^2 . (b) Sketch the graph of $x^2 + y^2 = 9$ in \mathbb{R}^3 . (c) Sketch the graph of $y^2 + z^2 = 1$, $x \ge 2$ in \mathbb{R}^3 .

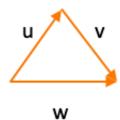


Example 3 (12.1). Let the sphere S_1 is given by the equation $x^2 + y^2 + z^2 + 2x - 4z = 11$. Find the distance between the center of the sphere S_1 and the point P(1, 4, 6).

Example 4 (12.2). The initial point of a vector \mathbf{v} in \mathbb{R}^2 is the origin and the terminal point is in the quad II. If \mathbf{v} makes an angle of $\frac{2\pi}{3}$ with positive x-axis and $|\mathbf{v}| = 6$, find the vector \mathbf{v} .

Example 5 (12.2). Draw the vectors as described below.

Example 6 (12.2). Find the unit vectors that are parallel to the tangent line to the parabola $y = x^2$ at the point (4, 16).


Example 7 (12.3). If $\mathbf{a} = \langle \mathbf{2}, -\mathbf{1}, \mathbf{0} \rangle$, find a vector \mathbf{b} such that $comp_{\mathbf{a}}\mathbf{b} = 3$.

Example 8 (12.3). Find the direction angles of the vector $\mathbf{a} = <1, 2, -1 >$.

Example 9 (12.3). Use vectors to determine whether the triangle with vertices A(3, 2, 0), B(0, 1, 2) and C(3, 1, 2) is right-angled.

Example 10 (12.3). Consider the triangle below is an equilateral triangle with $|\mathbf{u}| = 1$. Compute $\mathbf{u} \cdot \mathbf{v}$ and $\mathbf{u} \cdot \mathbf{w}$.

