$\lim _{x \rightarrow 0} \sin x=0, \lim _{x \rightarrow 0} \cos x=1, \quad \lim _{x \rightarrow 0} \frac{\sin x}{x}=1, \lim _{x \rightarrow 0} \frac{\cos x-1}{x}=0$

1. Find the limit.
(a) $\left.\lim _{t \rightarrow 0} \frac{\sin ^{2} 3 t}{t^{2}}=\lim _{t \rightarrow 0}\left(\frac{3 \sin 3 t}{3 t}\right)^{2} \stackrel{\lim _{x \rightarrow 0} \frac{\sin x}{x}=1}{=} \lim _{t \rightarrow 0} 3^{2}\left(\frac{\sin 3 t}{3 t}\right)^{2}=9\left[\lim _{t \rightarrow 0} \frac{\sin 3 t}{3 t}\right]^{2}=9\right]$
(b) $\lim _{x \rightarrow 0} \frac{\sin 3 x}{\sin 5 x}=\lim _{x \rightarrow 0} \frac{3 \sin 3 x}{3 x} \frac{5 x}{5 \sin 5 x}=\frac{3}{5} \lim _{x \rightarrow 0} \frac{\sin 3 x}{3 x} \frac{5 x^{3}}{3 \sin 5 x}=\frac{3}{5}$
(c) $\lim _{x \rightarrow 0} \frac{(\cos x-1) \sin 3 x}{x^{2}}=3 \lim _{x \rightarrow 0} \frac{\cos x-1^{0}}{7 x} \cdot \frac{\sin 3 x^{\prime}}{3 x}=0$
$\tan \pi z$
(d) $\lim _{x \rightarrow-2} \frac{\tan \pi x}{x+2}\left|\begin{array}{c}z=x+2 \\ x=z-2 \\ z \rightarrow 0 \text { as } x \rightarrow-2\end{array}\right|=\lim _{z \rightarrow 0} \frac{\tan [\pi(z-2)]}{z}=\lim _{z \rightarrow 0} \frac{\overbrace{}^{x}(\pi z-2 \pi)}{z}$
$=\lim _{z \rightarrow 0} \frac{\tan \pi z}{z}=\lim _{z \rightarrow 0} \frac{\sin \pi z}{z \cos \pi z}=\lim _{z \rightarrow 0} \frac{\pi \sin \pi z}{\pi z} \cdot \frac{1}{\cos \pi z}=\pi \lim _{z \rightarrow 0} \frac{\sin \pi z}{\pi z}$
$=\pi$
$\left(x^{n}\right)^{\prime}=n x^{n-1},\left([u(x)]^{n}\right)^{\prime}=n[u(x)]^{n-1} u^{\prime}(x)$ - the Chain Rule for power
2. Differentiate the function.
(a)

$$
\begin{aligned}
& s(t)=t^{8}+6 t^{7}-18 t^{2}+2 t \\
& s^{\prime}(t)=\left(t^{8}\right)^{\prime}+6\left(t^{7}\right)^{\prime}-18\left(t^{2}\right)^{\prime}+2(t)^{\prime}=8 t^{7}+42 t^{6}-36 t+2
\end{aligned}
$$

(b) $x(t)=\sqrt[3]{t}-\frac{1}{\sqrt[3]{t}}=\boldsymbol{t}^{1 / 3}-\boldsymbol{t}^{-1 / 3}$

$$
\begin{aligned}
& =\sqrt[3]{t}-\frac{1}{\sqrt[3]{t}}=t^{1 / 3}-t^{-1 / 3} \\
& x^{\prime}(t)=\left(t^{1 / 3}\right)^{\prime}-\left(t^{-1 / 3}\right)^{\prime}=\frac{1}{3} t^{1 / 3-1}-\left(-\frac{1}{3}\right) t^{-1 / 3-1}=\frac{1}{3} t^{-2 / 3}+\frac{1}{3} t^{-4 / 3}
\end{aligned}
$$

(c) $f(x)=\left(3 x^{3}-2 x^{2}+1\right)^{6}$

$$
\begin{aligned}
& f(x)=\left(3 x^{3}-2 x^{2}+1\right)^{6} \\
& f^{\prime}(x)=6\left(3 x^{3}-2 x^{2}+1\right)^{5}\left(3 x^{3}-2 x^{2}+1\right)^{\prime}=6\left(3 x^{3}-2 x^{2}+1\right)^{5}\left(9 x^{2}-4 x\right)
\end{aligned}
$$

(d) $G(x)=\frac{3 x-7}{x^{2}+5 x-4}$

$$
\begin{aligned}
& \left(\frac{u}{v}\right)^{\prime}=\frac{u^{\prime} v-v^{\prime} u}{v^{2}} \\
& G^{\prime}(x)=\frac{(3 x-7)^{\prime}\left(x^{2}+5 x-4\right)-\left(x^{2}+5 x-4\right)^{\prime}(3 x-7)}{\left(x^{2}+5 x-4\right)^{2}}=\frac{3\left(x^{2}+5 x-4\right)+(2 x+5)(3 x-7)}{\left(x^{2}+5 x-4\right)^{2}}
\end{aligned}
$$

$$
\begin{array}{lll}
(\cos x)^{\prime}==\sin x & (\tan x)^{\prime}=\sec ^{2} x & \sec x)^{\prime}=\sec x \tan x \\
(\sin x)^{\prime}=\cos x & (\cot x)^{\prime}=-\csc ^{2} x & (\csc x)^{\prime}=-\csc x \cot x
\end{array}
$$

$$
\text { (e) } \begin{aligned}
f(x) & =\sqrt{x^{3}-3 x^{2}+3 x-1}=\left(x^{3}-3 x^{2}+3 x-1\right)^{1 / 2} \\
f^{\prime}(x) & =\frac{1}{2}\left(x^{3}-3 x^{2}+3 x-1\right)^{1 / 2-1}\left(x^{3}-3 x^{2}+3 x-1\right)^{\prime}=\frac{1}{2}\left(x^{3}-3 x^{2}+3 x-1\right)^{-1 / 2}\left(3 x^{2}-6 x+3\right)
\end{aligned}
$$

(f) $g(\theta)=\left(1+\cos ^{2} \theta\right)^{3}$

$$
\begin{aligned}
& {[f(g(x))]^{\prime}=f^{\prime}(g(x)) \cdot g^{\prime}(x) } \\
& g^{\prime}(\theta)=3\left(1+\cos ^{2} \theta\right)^{2}\left(1+\cos ^{2} \theta\right)^{\prime}=3\left(1+\cos ^{2} \theta\right)^{2}(2 \cos \theta)(\cos \theta)^{\prime} \\
&=-3\left(1+\cos ^{2} \theta\right)^{2}(2 \cos \theta)(\sin \theta)=-6 \cos \theta \sin \theta\left(1+\cos ^{2} \theta\right)^{2}
\end{aligned}
$$

(g)

$$
\begin{aligned}
& f(x)=\cos \sqrt{x} \\
& f^{\prime}(x)=-\sin \sqrt{x}(\sqrt{x})^{\prime}=-\frac{\sin \sqrt{x}}{2 \sqrt{x}}
\end{aligned}
$$

$$
\text { (h) } \begin{aligned}
f(x) & =\left(\frac{x^{4}-1}{x^{4}+1}\right)^{3} \\
f^{\prime}(x) & =3\left(\frac{x^{4}-1}{x^{4}+1}\right)^{2}\left(\frac{x^{4}-1}{x^{4}+1}\right)^{\prime} \\
& =3\left(\frac{x^{4}-1}{x^{4}+1}\right)^{2} \frac{\left(x^{4}-1\right)^{\prime}\left(x^{4}+1\right)-\left(x^{4}+1\right)^{\prime}\left(x^{4}-1\right)}{\left(x^{4}+1\right)^{2}} \\
& =3\left(\frac{x^{4}-1}{x^{4}+1}\right)^{2} \frac{4 x^{3}\left(x^{4}+1\right)-4 x^{3}\left(x^{4}-1\right)}{\left(x^{4}+1\right)^{2}} \\
& \left.=3\left(\frac{x^{4}-1}{x^{4}+1}\right)^{2} \frac{4 x^{3}\left[x^{4}+1-\left(x^{4}-1\right)\right]}{\left(x^{4}+1\right)^{2}}=3^{4} \frac{x^{4}-1}{x^{4}+1}\right)^{2} \frac{8 x^{3}}{\left.6 x^{4}+1\right)^{2}} \\
& =24 x^{3} \frac{\left(x^{4}-1\right)^{2}}{\left(x^{4}+1\right)^{4}}
\end{aligned}
$$

New Section 4 Page 4

$$
\text { (i) } \begin{aligned}
f(x) & =\frac{2 x+1}{\sqrt{x^{2}+3}}=\frac{2 x+1}{\left(x^{2}+3\right)^{1 / 2}} \quad 1 / 2\left(x^{2}+3\right)^{-1 / 2}\left(x^{2}+3\right)^{\prime} \\
f^{\prime}(x) & =\frac{(2 x+1)^{\prime}\left(x^{2}+3\right)^{1 / 2}-\left[\left(x^{2} / 3\right)^{1 / 2}\right]^{\prime}(2 x+1)}{\left(\sqrt{x^{2}+3}\right)^{2}} \\
& =\frac{2\left(x^{2}+3\right)^{1 / 2}-\frac{1}{2}\left(x^{2}+3\right)^{-1 / 2}\left(x^{3}+3\right)^{\prime}(2 x+1)}{x^{2}+3} \\
& =\frac{2\left(x^{2}+3\right)^{1 / 2}-\frac{1}{2}\left(x^{2}+3\right)^{-1 / 2}(2 x)(2 x+1)}{x^{2}+3} \\
& =\frac{2\left(x^{2}+3\right)^{1 / 2}-x(2 x+1)\left(x^{2}+3\right)^{-1 / 2}}{x^{2}+3}
\end{aligned}
$$

$$
[f(x) \cdot g(x)]^{\prime}=f^{\prime}(x) g(x)+g^{\prime}(x) f(x)
$$

(j) $f(x)=\underbrace{\left(x^{6}+4 x^{5}-11\right)^{5}\left(2+x^{8}\right)^{7}}$

$$
\begin{aligned}
& f^{\prime}(x)=\left[\left(x^{6}+4 x^{5}-11\right)^{5}\right]^{1}\left(2+x^{8}\right)^{7}+\left(x^{6}+4 x^{5}-11\right)^{5}\left[\left(2+x^{8}\right)^{7}\right]^{1} \\
& =5\left(x^{6}+4 x^{5}-11\right)^{4}(\underbrace{\left.\left(x^{6}+4 x^{5}-11\right)^{1}\left(2+x^{8}\right)^{7}+\left(x^{6}+4 x^{5}-11\right)^{5}\right)^{\left(2+x^{8}\right)^{6} \underbrace{\left(2+x^{8}\right)^{\prime}}_{x}}}_{6 x^{5}+20 x^{4}} \begin{array}{l}
=5\left(x^{6}+4 x^{5}-11\right)^{4}\left(6 x^{5}+20 x^{4}\right)\left(2+x^{8}\right)^{7}+(56)^{6}\left(x^{6}+4 x^{5}-11\right)^{5}\left(2+x^{8}\right)^{6}\left(x^{7}\right)
\end{array}, ~
\end{aligned}
$$

3. Functions f and g satisfy the properties as shown in the table. Find the indicated quantity.

x	$f(x)$	$f^{\prime}(x)$	$g(x)$	$g^{\prime}(x)$
1	-3	3	1	1
2	0	3	-5	10
3	2	5	0	4

(a) $h^{\prime}(1)$, if $h(x)=f(g(x))$
(b) $z^{\prime}(2)$, if $z(x)=[f(2 x-1)]^{4}$
(c) $G^{\prime}(1)$, if $G(x)=\left[x^{2}-g(2 x)\right]^{3}$
(a)

$$
\begin{aligned}
h(x) & =f(g(x)) \\
h^{\prime}(x) & =f^{\prime}(g(x)) \cdot g^{\prime}(x) \\
h(1) & \left.=f^{\prime}(g(1)) \cdot g^{\prime}(1) \quad\left[g^{\prime}(1)=1\right) \quad g(1)=1\right] \\
& =f^{\prime}(1) \cdot 1=3
\end{aligned}
$$

(b)

$$
\begin{aligned}
z(x) & =[f(2 x-1)]^{4} \\
z^{\prime}(x) & =4[f(2 x-1)]^{3}[f(2 x-1)]^{\prime} \\
& =4[f(2 x-1)]^{3} f^{\prime}(2 x-1) \cdot(2 x-1)^{\prime} \\
& =4[f(2 x-1)]^{3} f^{\prime}(2 x-1)(2)
\end{aligned}
$$

plug in $x=2$
(c)

$$
\begin{aligned}
G(x) & =\left[x^{2}-g(2 x)\right]^{3} \\
G^{\prime}(x) & =3\left[x^{2}-g(2 x)\right]^{2}\left(x^{2}-g(2 x)\right)^{\prime} \\
& =3\left[x^{2}-g(2 x)\right]^{2}\left(2 x-g^{\prime}(2 x)(2 x)^{\prime}\right) \\
& =3\left[x^{2}-g(2 x)\right]^{2}\left(2 x-2 g^{\prime}(2 x)\right) \leftarrow \text { plug in } x=1 \\
G^{\prime}(1) & =3(1-g(2))^{2}\left(2-2 g^{\prime}(2)\right) \\
& g(2)=-5, g^{\prime}(2)=10 \\
& =3(1-(-5))^{2}(2-2(10)) \\
& =3(36)(-18)=-1944
\end{aligned}
$$

$$
\begin{aligned}
& a x^{2}+b x+c=0 \\
& x=\frac{-b \pm \sqrt{b^{2-4 a c}}}{2 a}
\end{aligned}
$$

4. For what values of x does the graph of $f(x)=2 x^{3}-3 x^{2}-6 x+87$ have a horizontal tangent?

$$
\begin{aligned}
& \text { horizontal tangent } \Rightarrow \text { slope }=0 \Rightarrow \text { slope }=f^{\prime}(x) \\
& \begin{aligned}
f^{\prime}(x) & =\left(2 x^{3}-3 x^{2}-6 x+87\right)^{\prime} \\
& =6 x^{2}-6 x-6=0 \\
& x^{2}-x-1=0 \\
& x_{1}=\frac{1+\sqrt{1+4}}{2}=\frac{1+\sqrt{5}}{2} \quad, x_{2}=\frac{1-\sqrt{1+4}}{2}=\frac{1-\sqrt{5}}{2}
\end{aligned}
\end{aligned}
$$

5. Find the equation of the tangent line to the curve $y=x \sqrt{1+x^{2}}$ at the point where $x=1$.

Tangent line: $\quad y-y(1)=y^{\prime}(1)(x-1)$

$$
\begin{array}{rl|l}
y(x)=x\left(1+x^{2}\right)^{1 / 2} & y(1)=1(1+1)^{1 / 2}=\sqrt{2} \\
\hline y^{\prime}(x)=x^{\prime}\left(1+x^{2}\right)^{1 / 2}+x\left[\left(1+x^{2}\right)^{1 / 2}\right]^{\prime} & \\
& =\left(1+x^{2}\right)^{1 / 2}+x \frac{1}{2}\left(1+x^{2}\right)^{-1 / 2}\left(1+x^{2}\right)^{\prime} & \\
& =\left(1+x^{2}\right)^{1 / 2}+\frac{x}{2}\left(1+x^{2}\right)^{-1 / 2}(2 x) & \\
y^{\prime}(x)=\left(1+x^{2}\right)^{1 / 2}+\frac{x^{2}}{\left(1+x^{2}\right)^{1 / 2}} & & y^{\prime}(1)=(1+1)^{1 / 2}+\frac{1}{(1+1)^{1 / 2}}=\sqrt{2}+\frac{1}{\sqrt{2}}=\frac{2+1}{\sqrt{2}}=\frac{3(\sqrt{2})}{(\sqrt{2})(\sqrt{2})}=\frac{3 \sqrt{2}}{2} \\
& \text { tangent line: } & y-\sqrt{2}=\frac{3 \sqrt{2}}{2}(x-1)
\end{array}
$$

6. Find $\frac{d y}{d x}$ for the equation $\cos (x-y)=y \sin x$.

$$
\begin{aligned}
& \frac{d}{d x}(\cos (x-y))=\frac{d}{d x}(y \sin x) \\
& -\sin (x-y) \frac{d}{d x}(x-y)=\frac{d y}{d x} \sin x+y \cos x \\
& -\sin (x-y)\left(1-\frac{d y}{d x}\right)=\frac{d y}{d x} \sin x+y \cos x
\end{aligned}
$$

solve for $\frac{d y}{d x}$:

$$
\begin{aligned}
& -\sin (x-y)+\frac{d y}{d x} \sin (x-y)=\frac{d y}{d x} \sin x+y \cos x \\
& \frac{d y}{d x} \sin (x-y)-\frac{d y}{d x} \sin x=y \cos x+\sin (x-y) \\
& \frac{d y}{d x}(\sin (x-y)-\sin x)=y \cos x+\sin (x-y) \\
& \frac{d y}{d x}=\frac{y \cos x+\sin (x-y)}{\sin (x-y)-\sin x}
\end{aligned}
$$

7. Find $\frac{d x}{d y}$ for the equation $y^{4}+x^{2} y^{2}+y x^{4}=y+1$.

$$
\begin{aligned}
& \frac{d}{d y}\left(y^{4}+x^{2} y^{2}+y x^{4}\right)=\frac{d}{d y}(y+1) 2 y \quad 1 \\
& 4 y^{3}+\frac{d}{d y}\left(x^{2}\right) y^{2}+x^{2} \frac{d}{d y}\left(x^{2}\right)^{2}+\frac{d}{d y}\left(y^{3}\right) x^{4}+y \frac{d}{d y}\left(x^{4}\right)=\frac{d y^{2}}{d y} \\
& 4 y^{3}+2 x \frac{d x}{d y} y^{2}+2 y x^{2}+x^{4}+y\left(4 x^{3}\right) \frac{d x}{d y}=1 \\
& 2 x y^{2} \frac{d x}{d y}+4 y x^{3} \frac{d x}{d y}=1-4 y^{3}-2 y x^{2}-x^{4} \\
& \frac{d x}{d y}\left(2 x y^{2}+4 y x^{3}\right)=1-4 y^{3}-2 y x^{2}-x^{4} \\
& \frac{d x}{d y}=\frac{1-4 y^{3}-2 y x^{2}-x^{4}}{2 x y^{2}+4 y x^{3}}
\end{aligned}
$$

8. Find the slope of the tangent line to the curve $2\left(x^{2}+y^{2}\right)^{2}=25\left(x^{2}-y^{2}\right)$ at the point $(3,1)$.

$$
\begin{aligned}
& \text { slope }=\frac{d y}{d x}(3,1) \\
& 2 \frac{d}{d x}\left[\left(x^{2}+y^{2}\right)^{2}\right]=25 \frac{d}{d x}\left(x^{2}-y^{2}\right) \\
& 2(2)\left(x^{2}+y^{2}\right) \frac{d}{d x}\left(x^{2}+y^{2}\right)=25\left(2 x-2 y \frac{d y}{d x}\right) \\
& 4\left(x^{2}+y^{2}\right)\left(2 x+2 y \frac{d y}{d x}\right)=50 x-50 y \frac{d y}{d x} \\
& 2 \\
& 4\left(x^{2}+y^{2}\right)\left(x+y \frac{d y}{d x}\right)=25 x-25 y \frac{d y}{d x} \\
& 4 x\left(x^{2}+y^{2}\right)+4 y \frac{d y}{d x}=25 x-25 y \frac{d y}{d x} \\
& 4 y \frac{d y}{d x}+25 y \frac{d y}{d x}=25 x-4 x\left(x^{2}+y^{2}\right) \\
& 29 y \frac{d y}{d x}=25 x-4 x\left(x^{2}+y^{2}\right) \\
& \frac{d y}{d x}=\frac{25 x-4 x\left(x^{2}+y^{2}\right)}{29 y}
\end{aligned}
$$

$$
\frac{d y}{d x}(3,1) \frac{\text { plug in } x=3}{y=1} \quad \frac{25(3)-4(3)\left(3^{2}+1\right)}{29(1)}=\frac{75-120}{29}=-\frac{45}{29}
$$

