

Example 1 (14.1). *Find and sketch the domain of the function.*

(a) $f(x,y) = \sqrt{xy} + e^{\sqrt{2-x}} + 3.$

(b)
$$f(x,y) = \frac{\sqrt{4 - x^2 - y^2}}{x + y}$$
.

Example 2 (14.1). Draw the level curves z = k when k = 1, 2, 3 of the function

$$f(x,y) = \ln(x^2 + y^2 - 9),$$

and sketch its graph.

Example 4 (14.3). Find the first partial derivative of the function.

(a)
$$f(x,y) = \frac{\ln x}{(x+y)^2}$$

$$(b) \ W(p,q) = \int_p^q \sqrt{1+t^5} \, dt$$

(a)
$$F(r, s, t) = r \tan(s + 3t) + 2t$$
.

Example 5 (14.3). Suppose $f(x, y) = \sqrt{9 - x^2 - 9y^2}$. Find $f_x(2, 0)$ and $f_y(2, 0)$ and interpret these values as slopes.

Example 6 (14.3/14.4). Suppose $f(x, y) = e^{xy} - 3x^2y$.

- (a) Find $f_x(0, -3)$ and $f_y(0, -3)$.
- (b) Is f differentiable at (0, -3)? Explain.
- (c) Find all the second order partial derivatives. Is f_{xy} equal to f_{yx} ? Explain why.

Tangent Planes Suppose f has continuous partial derivatives. An equation of the tangent plane to the surface z = f(x, y) at the point $P(x_0, y_0, z_0)$ is

$$z - z_0 = f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0)$$

or

$$z = f(x_0, y_0) + f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0)$$

The linear function

$$L(x,y) = f(a,b) + f_x(a,b)(x-a) + f_y(a,b)(y-b)$$

is called the linearization of f at (a, b), and the approximation

$$f(x,y) \approx f(a,b) + f_x(a,b)(x-a) + f_y(a,b)(y-b)$$

is called the *linear approximation* or the tangent plane approximation of f at (a, b).

Example 7 (14.4). Find an equation of the tangent plane at the point P(4,1,2) on the surface $z = \ln(x - 3y) + 2y$.

Example 8 (14.4). Consider the function

$$f(x, y, z) = \sqrt{x^2 + y^2 + z^2}.$$

- (a) Find the differential of the function.
- (b) Find the linearization of the function at the point (2, 1, 2).
- (c) Use the differential or linearization to estimate $\sqrt{1.9^2 + 1.1^2 + 2.01^2}$.

Example 9 (14.4). If $z = x^2 + 2y^2 - x$ and (x, y) changes from (2,3) to (1.9, 3.01), compare the values Δz and dz.

The Chan Rule Suppose that z = f(x, y) is a differentiable function of x and y, where x = g(t) and y = h(t) are both differentiable functions of t. Then z is a differentiable function of t and

$$\frac{dz}{dt} = \frac{\partial f}{\partial x}\frac{dx}{dt} + \frac{\partial f}{\partial y}\frac{dy}{dt} = \frac{\partial z}{\partial x}\frac{dx}{dt} + \frac{\partial z}{\partial y}\frac{dy}{dt}$$

Suppose that z = f(x, y) is a differentiable function of x and y, where x = g(s, t) and y = h(s, t) are differentiable functions of s and t. Then

$$\frac{\partial z}{\partial s} = \frac{\partial z}{\partial x}\frac{\partial x}{\partial s} + \frac{\partial z}{\partial y}\frac{\partial y}{\partial s}$$
$$\frac{\partial z}{\partial t} = \frac{\partial z}{\partial x}\frac{\partial x}{\partial t} + \frac{\partial z}{\partial y}\frac{\partial y}{\partial t}$$

Example 10 (14.5). The length l, width w, and height h of a rectangular box are changing with respect to time t. At a certain instance the dimensions are l = 5 cm, w = 4 cm and h = 10 cm, and length and width are increasing at a rate of 4 cm/s while the height is decreasing at a rate of 3 cm/s. At that instant find the rate at which the volume of the box is changing.

Example 11 (14.5). If $z = \tan^{-1}(x^2 + y^2)$, $x = s \ln t$, $y = te^s$, find $\frac{\partial z}{\partial s}$ when s = 2 and t = 1.

Example 12 (14.5). Find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$ if $x^3 + y^3 + z^3 = 3 - xyz$.