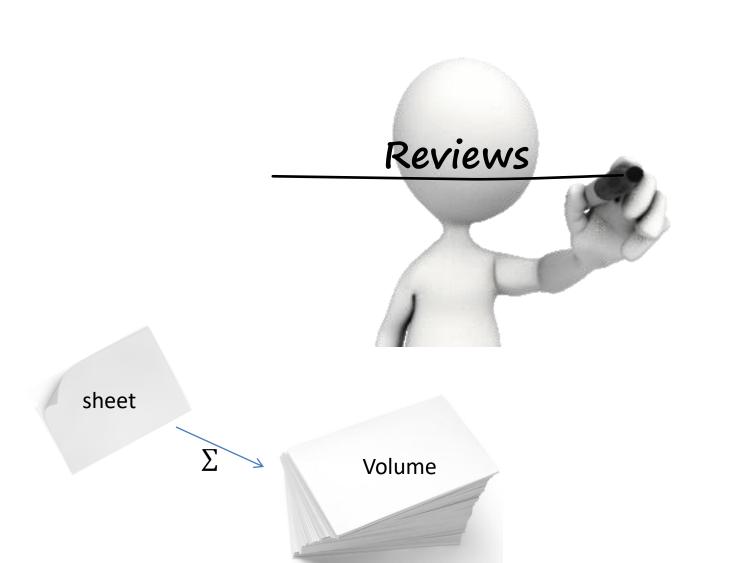


MATH 152 Week in Review

6.2 Volumes6.3 Volume by Cylindrical Shells



General slicing method for any volume

Step 1: Plot the graph

Step2. Find the size of a slice at *x* or *y*

- At *x*: Thickness $dx \Rightarrow$ Cross section A(x)
- At y: Thickness $dy \Rightarrow$ Cross section A(y)

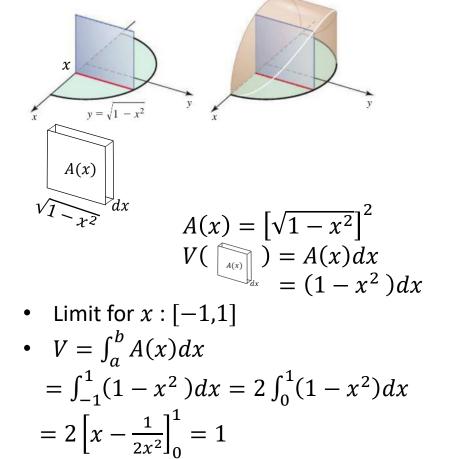
Step3. Find the volumnof a slice at *x* or *y*

- At x: Thickness $dx \Rightarrow$ Cross section A(x)
 - dV = A(x)dx
- At y: Thickness $dy \Rightarrow$ Cross section A(y)

• dV = A(y)dy

Step4. Find the upper/lower limits for x or y **Step5**. Set up integral and evaluate $V = \int_{a}^{b} A(x) dx$ or $V = \int_{c}^{d} A(y) dy$

The solid whose base is the region bounded by semicircle $y = \sqrt{1 - x^2}$ and the x –axis. And whose cross section through the solid perpendicular to the x axis are squares. Find the volume of the solid.



Volume by disks perpendicular to the x axis

Volume of solid of revolution around *x* axis Step 1: Plot the graph

Step2. Find the size of a <u>perpendicular</u> slice at x At x: Thickness $dx \Rightarrow$ Cross section A(x) $\pi[f(x)]^2$

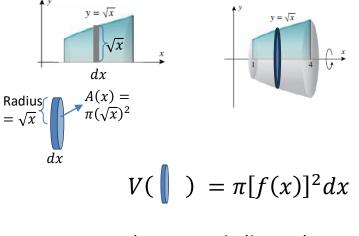
Step3. Find the volume of a slice at *x*

- At x: Thickness $dx \Rightarrow$ Cross section A(x)
 - $dV = \pi [f(x)]^2 dx$

Step4. Find the upper/lower limits for *x*

Step5. Set up integral and evaluate $V = \int_{a}^{b} A(x) dx = \int_{a}^{b} \pi [f(x)]^{2} dx$

Find the volume of the solid that is obtained when the region under the curve $y = \sqrt{x}$ over the interval [1, 4] is revolved about the *x*-axis



 $1 \le x \le 4$ (limits)

$$V = \int_{a}^{b} \pi [f(x)]^{2} dx$$

= $\int_{1}^{4} \pi x dx$
= $\frac{\pi}{2} [x^{2}]_{1}^{4}$
= $\frac{\pi}{2} [16 - 1] = \frac{15}{2} \pi$

Volume by Washer perpendicular to the x axis

Volume of solid of revolution around x axis Step 1: Plot the graph of f(x), g(x) w/ f > g

Step2. Find the size of a <u>perpendicular</u> slice at x

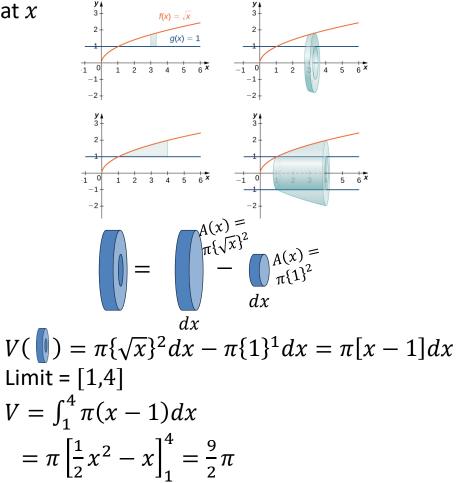
- At x: Thickness $dx \Rightarrow$ Cross section A(x)
- Washer = Large disc small disc = $\pi [f(x)]^2 - \pi [g(x)]^2$

Step3. Find the volume of a slice at *x*

- At x: Thickness $dx \Rightarrow$ Cross section A(x)
 - $dV = \pi([f(x)]^2 [g(x)]^2)dx$

Step4. Find the upper/lower limits for *x*

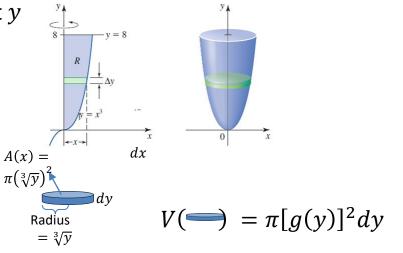
Step5. Set up integral and evaluate $V = \int_{a}^{b} A(x) dx$ $= \int_{a}^{b} \pi([f(x)]^{2} - [g(x)]^{2}) dx$ Find the volume of the solid that is obtained when the region between the curve $y = \sqrt{x}$ and y = 2 over the interval [1, 4] is revolved about the *x*-axis



Volume by disks perpendicular to the y axis

Volume of solid of revolution around y axis Step 1: Plot the graph

Find the volume of the solid that is obtained when the region between the curve $y = x^3$ and x = 0 between the interval $0 \le y \le 8$ is revolved about the *y*-axis



 $0 \le y \le 8$ (limits)

$$V = \int_{a}^{b} \pi [g(y)]^{2} dy$$

= $\int_{0}^{8} \pi y^{\frac{2}{3}} dy$
= $\pi \left[\frac{3}{5}x^{\frac{5}{3}}\right]_{0}^{8}$

Step2. Find the size of a <u>perpendicular</u> slice at y

- At y: Thickness $dy \Rightarrow$ Cross section A(y) $\pi[q(y)]^2$
- For y = f(x), solve for $x = f^{-1}(y)$ **Step3**. Find the volume of a slice at y
- At y: Thickness $dy \Rightarrow$ Cross section A(y)
 - $dV = \pi[g(y)]^2 dy$

Step4. Find the upper/lower limits for *y*

Step5. Set up integral and evaluate $V = \int_{c}^{d} A(y) dy = \int_{c}^{d} \pi[g(y)]^{2} dy$

Volume by Washer perpendicular to the y axis

Volume of solid of revolution around y axis Step 1: Plot the graph of f(y), g(y) w/ f > g

Step2. Find the size of a <u>perpendicular</u> slice at *y*

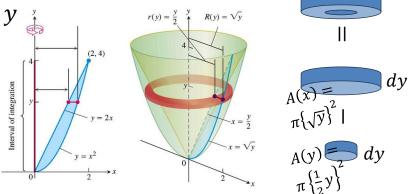
- At y: Thickness $dy \Rightarrow$ Cross section A(y)
- Washer = Large disc small disc = $\pi [f(y)]^2 - \pi [g(y)]^2$

Step3. Find the volume of a slice at *y*

- At x: Thickness $dx \Rightarrow$ Cross section A(y)
 - $dV = \pi([f(y)]^2 [g(y)]^2)dy$

Step4. Find the upper/lower limits for *y*

Step5. Set up integral and evaluate $V = \int_{a}^{b} A(y) dy$ $= \int_{a}^{b} \pi([f(y)]^{2} - [g(y)]^{2}) dy$ Find the volume of the solid that is obtained when the region between the curve $y = x^2$ and y = 2x is revolved about the y-axis



$$V(\bigcirc) = \pi \{\sqrt{x}\}^2 - \pi \{1\}^1 = \pi [x - 1]$$

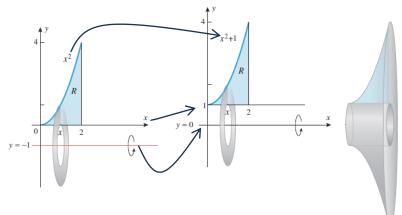
Limit = [1,4]
$$V = \int_1^4 \pi (x - 1) dx$$
$$= \pi \left[\frac{1}{2}x^2 - x\right]_1^4 = \frac{9}{2}\pi$$

Other axis of revolution

- Make the axis of revolution to x- or y- axis by translation
 - Translate the function and the axis of revolution
 - Align the axis of revolution to x or y axis

Example Find the volume of the solid generated when the region under the curve

 $y = x^2$ over the interval [0, 2] is rotated about the line y = -1.



• Translate 1 in y direction

•
$$y = f(x) \Rightarrow y = f(x) + 1$$

$$y = -1 \Rightarrow y = 0$$

•
$$\begin{cases} y = x^2 \implies y = x^2 + 1 \\ y = 0 \implies y = 1 \end{cases}$$

• x = 2 doesn't change by y -translation

Find the volume of the solid generated when the region between the curve $y = x^2 + 2$ and y = 1 over the interval [0, 2] is rotated about the x axis.

$$A_{\pi}^{(x)} = \int_{\pi}^{2} A_{\pi}^{(x)} = \pi \{x^{2} + 1\}^{2} dx - \pi \{1\}^{1} = \pi [x^{2} + 2x] dx$$

$$Limit = [0,2]$$

$$V = \int_{0}^{2} \pi (x^{2} + 2x) dx$$

$$= \pi \left[\frac{1}{3}x^{3} - x^{2}\right]_{0}^{2}$$

Volume by cylindrical shells about the y-axis

Volume of solid of revolution around y axis Step 1: Plot the graph

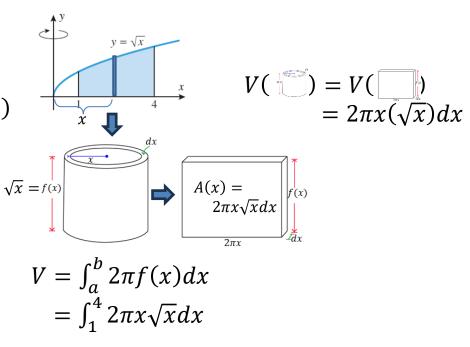
Step2. Find the size of a <u>parallel</u> slice at xAt x: Thickness $dx \Rightarrow$ Cross section A(x) $2\pi f(x) dx$

Step3. Find the volume of a slice at *x*

- At *x*: Thickness $dx \Rightarrow$ Cross section A(x)
 - $dV = 2\pi f(x)dx$

Step4. Find the upper/lower limits for *x*

Step5. Set up integral and evaluate $V = \int_{a}^{b} A(x) dx = \int_{a}^{b} 2\pi x f(x) dx$ Use cylindrical shells to find the volume of the solid generated when the region enclosed between $y = \sqrt{x}$, x = 1, x = 4, and the *x*-axis is revolved about the *y*-axis.



Volume by cylindrical shells about the x-axis

Volume of solid of revolution around *x* axis Step 1: Plot the graph

Step2. Find the size of a <u>parallel</u> slice at y At y: Thickness $dy \Rightarrow$ Cross section A(y) $2\pi f(y)dy$

Step3. Find the volume of a slice at *y*

• At y: Thickness $dx \Rightarrow$ Cross section A(y)

• $dV = 2\pi f(y)dy$

Step4. Find the upper/lower limits for *y*

Step5. Set up integral and evaluate $V = \int_{a}^{b} A(y) dy = \int_{a}^{b} 2\pi y f(y) dy$ Use cylindrical shells to find the volume of the solid generated when the shaded region is revolved about the indicated

axis.

$$y = \sqrt{x+2}$$

$$y = \sqrt{x+2}$$

$$y = \sqrt{x+2}$$

$$y = \sqrt{x+2}$$

$$x = \sqrt{x-2}$$

$$y = x$$

$$x = \sqrt{x+2}$$

$$x = \sqrt{x+2}$$

$$x = \sqrt{x-2}$$

$$y = x$$

$$x = \sqrt{x+2}$$

$$x = \sqrt{x-2}$$

$$y = x$$

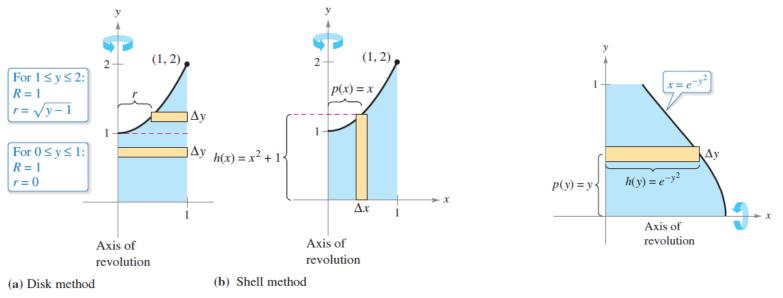
$$x = \sqrt{x+2}$$

$$V = \int_0^2 2\pi y [y - y^2 + 2] dy$$

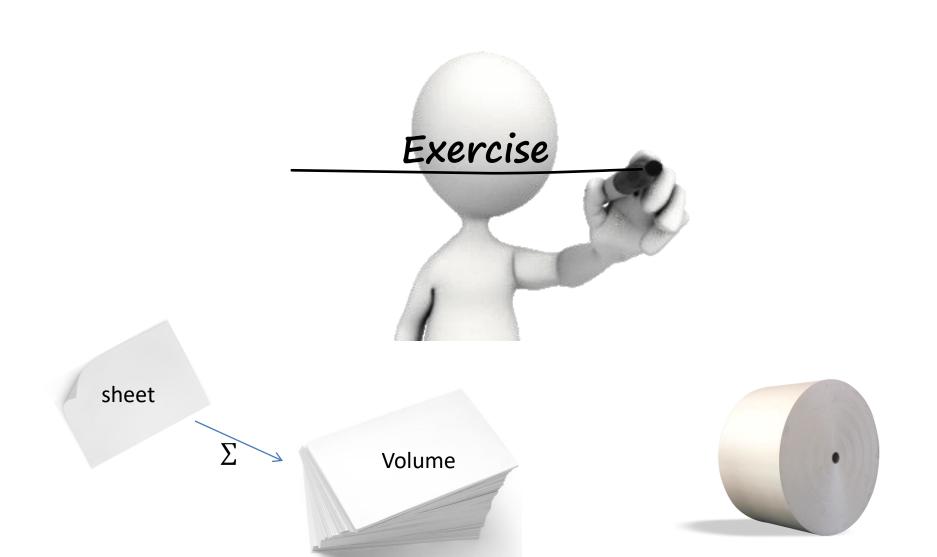
= $2\pi \int_0^2 [y^2 - x^3 + 2y] dy$
= $2\pi \left[\frac{1}{3}y^3 - \frac{1}{4}y^4 + y^2\right]_0^2$
= $2\pi \left[\frac{8}{3} - \frac{16}{4} + 4\right]$
= $\frac{16\pi}{3}$

Comparison of Disk and Shell Methods

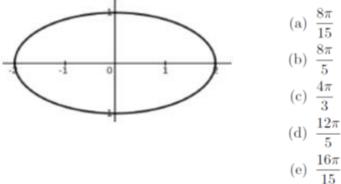
- Less integrals better (See if the volume can be found from a single integral)
- Try washer/disc methods first and see if the integral can be evaluated
 - See $(f(x))^2$ or $(f^{-1}(y))^2$ are integrable
- If the resulting integral is difficult to evaluate try the shell method
 - If the function is $y = f(ax^2 + b)$ such as e^{-x^2} then the shell method is preferred $\int 2\pi x f(ax^2 + b) dx$ w/ u-sub
- See if the integral is obtained without splitting regions with the shell method



A shell method is preferred



Find the volume of the solid whose base is the ellipse $x^2 + 4y^2 = 4$ and whose cross-sections perpendicular to the *y*-axis are squares. Evaluate your integral.



The region bounded by the curves $y = x^2$ and y = 1 is rotated about the line y = 1. Find the volume of the resulting solid.

The base of a solid is the region bounded by the curve $y = 5 - x^2$ and the x-axis. Cross-Sections perpendicular to the y-axis are rectangles with height equal to twice the base. Find the volume of this solid.

Consider the region R bounded by $y = 2x^2$ and y = 1, first quadrant only. Find the volume obtained by rotating R about the y-axis.

(a) $\frac{\pi}{4}$ (b) $\frac{\pi}{2}$ (c) π (d) $\frac{4\pi}{5}$

(e) None of the above

If we revolve the region bounded by $y = 1 - x^2$ and x - y = 1 about the line y = 3, which of the following integrals gives the resulting volume?

(a)
$$\int_{-1}^{2} 2\pi (3-x)(x^{2}-x+2) dx$$

(b)
$$\int_{-2}^{1} \pi \left((2+x^{2})^{2} - (4-x)^{2} \right) dx$$

(c)
$$\int_{-1}^{2} 2\pi (x-3)(x^{2}-x+2) dx$$

(d)
$$\int_{-2}^{1} \pi \left((4-x)^{2} - (2+x^{2})^{2} \right) dx$$

(e)
$$\int_{-1}^{2} \pi \left((2+x^{2})^{2} - (4-x)^{2} \right) dx$$

Consider the region R bounded by $u = 4x - x^2$ and u = 0. Which of the following integrals gives the volume of the solid obtained by revolving R about the line x = -2?

(a)
$$\int_{0}^{4} 2\pi (2-x)(4x-x^{2}) dx$$

(b) $\int_{0}^{4} 2\pi x(4x-x^{2}) dx$
(c) $\int_{0}^{4} 2\pi (x+2)(4x-x^{2}) dx$
(d) $\int_{0}^{4} 2\pi (x-2)(4x-x^{2}) dx$

(e) None of the above

Consider the solid S whose base is the region bounded by $y = 4 - x^2$ and y = 0. Cross sections perpendicular to the y - axis are semicircles. Find the volume of S.

Consider the solid S described here. The base of S is the region bounded by $y = x^2$ and y = 4. Cross sections perpendicular to the x - axis are squares. Find the volume of S.

Consider the region R bounded by $y = \sqrt{x}$, y = 1, x = 0. Find the volume obtained by rotating the region R about the line y = 1.

(a) $\frac{\pi}{6}$ (b) $\frac{\pi}{2}$ (c) $\frac{7\pi}{6}$ (d) $\frac{\pi}{3}$ (e) $\frac{5\pi}{6}$

Find the volume of the solid found by rotating the region bounded by the curves $y = -x^2 + 2x$ and y = 0 about the y-axis.

(a)
$$\frac{16}{3}\pi$$

(b) $\frac{8}{3}\pi$
(c) $\frac{4}{3}\pi$
(d) $\frac{2}{3}\pi$
(e) $\frac{1}{3}\pi$

02 MATH 152 | Week in Review

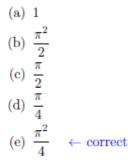
Consider the region R bounded by $y = x^3$, y = -x + 2, x = 0, and x = 1.

- (a) Sketch the region R.
- (b) Set up the integral that gives the volume obtained by revolving the region R about the x-axis using the method of washers. DO NOT EVALUATE THE INTEGRAL.
- (c) Set up the integral that gives the volume obtained by revoling the region R about the line x = 1 using the method of cylindrical shells. DO NOT EVALUATE THE INTEGRAL.

Consider the region R bounded by $y = \ln x$, y = 0, and x = 2. If this region is revolved about the line y = -2:

- (a) Set up but do not evaluate the integral that gives the volume using the method of shells.
- (b) Set up but **do not evaluate** the integral that gives the volume using the method of washers.

The region bounded by $y = \cos x$ and the x-axis on the interval $\left[0, \frac{\pi}{2}\right]$ is rotated about the x-axis. Find the volume of the resulting solid.



The region bounded by $y = e^x$ and the x-axis on the interval [0, 2] is rotated about the x-axis. Find the volume of the resulting solid.

(a)
$$\frac{\pi e^4}{2}$$

(b) $\frac{\pi e^2}{2}$
(c) $\frac{\pi}{2}(e^4 - 1) \leftarrow \text{correct}$
(d) $\frac{\pi}{2}(e^2 - 1)$
(e) $2\pi(e^4 - 1)$

Consider the region bounded by the curves $x = y^2 - 2y$ and the y-axis. Which of the following represents the volume of solid formed when the region is rotated about y = 4?

(a)
$$\int_{0}^{2} 2\pi y (y^{2} - 2y) \, dy$$

(b)
$$\int_{0}^{2} 2\pi y (2y - y^{2}) \, dy$$

(c)
$$\int_{0}^{2} 2\pi (4 - y) (y^{2} - 2y) \, dy$$

(d)
$$\int_{0}^{2} \pi (y - 4) (4y^{2} - y^{4}) \, dy$$

(e)
$$\int_{0}^{2} 2\pi (4 - y) (2y - y^{2}) \, dy \quad \leftarrow \text{ correct}$$

Consider the region bounded by the two curves $y = \cos x$, $y = \sin x$ and the two lines x = 0 and $x = \frac{\pi}{4}$. Which of the following represents the volume of this region being rotated about the line x = -1?

(a)
$$\int_{0}^{\frac{\pi}{4}} 2\pi (x+1)(\cos x - \sin x) dx \leftarrow \text{correct}$$

(b) $\int_{0}^{\frac{\pi}{4}} 2\pi (x+1)(\sin x - \cos x) dx$
(c) $\int_{-1}^{\frac{\pi}{4}} 2\pi (x+1)(\cos x - \sin x) dx$
(d) $\int_{0}^{\frac{\pi}{4}} 2\pi (x+1)(\cos^2 x - \sin^2 x) dx$
(e) $\int_{0}^{\frac{\pi}{4}} \pi (\cos^2 x - \sin^2 x) dx$

Which of the following integrals gives the volume of the solid obtained by rotating the region bounded by $y = 5 - x^2$ and y = 1 about the x-axis.

(a)
$$\pi \int_{-2}^{2} (1 - (5 - x^2)^2) dx$$

(b) $\pi \int_{-2}^{2} (4 - x^2)^2 dx$
(c) $2\pi \int_{-2}^{2} x(4 - x^2) dx$
(d) $\pi \int_{-2}^{2} ((5 - x^2)^2 - 1) dx \quad \leftarrow \text{ correct}$
(e) $2\pi \int_{-2}^{2} x(x^2 - 4) dx$

02 MATH 152 | Week in Review

Find the volume of the solid obtained by rotating the region bounded by $x = y^2$ and $x = y^3$ around the y-axis.

(a) $\frac{\pi}{35}$ (b) $\frac{\pi}{10}$ (c) $\frac{\pi}{12}$ (d) $\frac{2\pi}{35} \leftarrow \text{correct}$ (e) $\frac{\pi}{105}$