

Note $\sharp 10$: Exam 04 review

Problem 1. Find all critical points and classify them as local maximum, local minimum, or saddle point. Find the local maximum and local minimum values. $f(x, y) = x^2 + y^4 + 2xy$

Problem 2. Find the extreme values (absolute maximum and minimum values) of f on the region described. f(x,y) = x + y - xy, D is the closed triangular region with vertices (0,0), (0,2), and (4,0)

Problem 3. Find $\int_C x ds$, where C is the right half of the circle $x^2 + y^2 = 4$, oriented counterclockwise.

Problem 4. Evaluate $\int_C z dx + (xy) dy$, where C is the line segment from (-1, 1, 0) to (1, 2, 0).

Problem 5. Evaluate $\int_C \mathbf{F} \cdot d\mathbf{r}$, where $\mathbf{F}(x, y, z) = \langle y + z, xy, 2z \rangle$ and C is the curve given by $\mathbf{r}(t) = \langle 3, t, t^2 \rangle, 1 \le t \le 2$.

Problem 6. Let $\mathbf{F}(x, y) = \langle 2xy - y + 4, x^2 - x \rangle$. If **F** is conservative, find f(1, 2), where f is the potential function for **F** with constant 0.

Problem 7. Evaluate $\int_C \mathbf{F} \cdot d\mathbf{r}$, where $\mathbf{F}(x, y, z) = \langle 2x + 2y, 2x + 2y + 2z, 2y + 2z \rangle$ and C is the curve given by $\mathbf{r}(t) = \langle t^2, t, t^3 + 1 \rangle, 0 \le t \le 1$.

Problem 8. Find $\int_C (3y + 7e^{\sqrt{x}}) dx + (8x + 9\cos(y^2)) dy$, where C is the boundary of the region enclosed by $y = x^2$ and $x = y^2$.

Problem 9. Find the surface area of the part of the paraboloid $x = y^2 + z^2$ that lies inside the cylinder $y^2 + z^2 = 9$.

Problem 10. Set up without evaluation $\iint_S (x^2 + y^2) dS$, where S is the hemisphere given by $x^2 + y^2 + z^2 = 4, z \ge 0$.

Problem 11. Find the flux of $\mathbf{F} = \langle x, y, 4 - z \rangle$ across S, where S is the part of the paraboloid $z = 4 - x^2 - y^2$ that is above the xy-plane. Use the positive (outward) orientation.

Problem 12. Use Stokes' Theorem to find $\int_C \mathbf{F} \cdot d\mathbf{r}$, where $\mathbf{F} = \langle 2xz, 4x^2, 5y^2 \rangle$ and C is curve of intersection of the plane z = x + 4 and the cylinder $x^2 + y^2 = 4$, oriented counterclockwise when viewed from above.

Problem 13. Use the divergence theorem to evaluate $\iint_S \mathbf{F} \cdot d\mathbf{S}$, where $\mathbf{F} = \langle x, e^{\sin(2z)}, (5+3y^{200})^7 \rangle$ and S is the surface bounded by $x^2 + y^2 = 4, z = 0, z = 5$.