Note $\sharp 10$: Exam 04 Review

Problem 1. Find all critical points and classify them as local maximum, local minimum, or saddle point. Find the local maximum and local minimum values. $f(x, y)=x^{2}+y^{4}+2 x y$

Problem 2. Find the extreme values(absolute maximum and minimum values) of f on the region described. $f(x, y)=x+y-x y, \quad D$ is the closed triangular region with vertices $(0,0),(0,2)$, and $(4,0)$

Problem 3. Find $\int_{C} x d s$, where C is the right half of the circle $x^{2}+y^{2}=4$, oriented counterclockwise.

Problem 4. Evaluate $\int_{C} z d x+(x y) d y$, where C is the line segment from $(-1,1,0)$ to $(1,2,0)$.
Problem 5. Evaluate $\int_{C} \mathbf{F} \cdot d \mathbf{r}$, where $\mathbf{F}(x, y, z)=\langle y+z, x y, 2 z\rangle$ and C is the curve given by $\mathbf{r}(t)=\left\langle 3, t, t^{2}\right\rangle, 1 \leq t \leq 2$.

Problem 6. Let $\mathbf{F}(x, y)=\left\langle 2 x y-y+4, x^{2}-x\right\rangle$. If \mathbf{F} is conservative, find $f(1,2)$, where f is the potential function for \mathbf{F} with constant 0 .

Problem 7. Evaluate $\int_{C} \mathbf{F} \cdot d \mathbf{r}$, where $\mathbf{F}(x, y, z)=\langle 2 x+2 y, 2 x+2 y+2 z, 2 y+2 z\rangle$ and C is the curve given by $\mathbf{r}(t)=\left\langle t^{2}, t, t^{3}+1\right\rangle, 0 \leq t \leq 1$.

Problem 8. Find $\int_{C}\left(3 y+7 e^{\sqrt{x}}\right) d x+\left(8 x+9 \cos \left(y^{2}\right)\right) d y$, where C is the boundary of the region enclosed by $y=x^{2}$ and $x=y^{2}$.

Problem 9. Find the surface area of the part of the paraboloid $x=y^{2}+z^{2}$ that lies inside the cylinder $y^{2}+z^{2}=9$.

Problem 10. Set up without evaluation $\iint_{S}\left(x^{2}+y^{2}\right) d S$, where S is the hemisphere given by $x^{2}+y^{2}+z^{2}=4, z \geq 0$.

Problem 11. Find the flux of $\mathbf{F}=\langle x, y, 4-z\rangle$ across S, where S is the part of the paraboloid $z=4-x^{2}-y^{2}$ that is above the $x y$-plane. Use the positive (outward) orientation.

Problem 12. Use Stokes' Theorem to find $\int_{C} \mathbf{F} \cdot d \mathbf{r}$, where $\mathbf{F}=\left\langle 2 x z, 4 x^{2}, 5 y^{2}\right\rangle$ and C is curve of intersection of the plane $z=x+4$ and the cylinder $x^{2}+y^{2}=4$, oriented counterclockwise when viewed from above.
Problem 13. Use the divergence theorem to evaluate $\iint_{S} \mathbf{F} \cdot d \mathbf{S}$, where $\mathbf{F}=\left\langle x, e^{\sin (2 z)},\left(5+3 y^{200}\right)^{7}\right\rangle$ and S is the surface bounded by $x^{2}+y^{2}=4, z=0, z=5$.

