3.2: SOLUTIONS OF LINEAR HOMOGENEOUS ODES

Review

• Existence and uniqueness: Consider the initial value problem

$$y'' + p(t)y' + q(t)y = g(t),$$
 $y(t_0) = y_0,$ $y'(t_0) = y'_0.$

If p, q, and g are $\underline{\text{continuous}}$ on an open interval I=(a,b) that contains the point t_0 , then there is exactly one solution to the initial value problem and the solution exists throughout the entire interval I.

• Principle of superposition: If y_1 and y_2 are solutions to a homogeneous ODE, then

• A set of functions is called a **fundamental set of solutions** if adding them together with constants forms the general solution.

• The **Wronskian** of y_1 and y_2 is defined as

$$W[y_1,y_2](t) = \begin{cases} y_1(t) & y_2(t) \\ y_1(t) & y_2'(t) \end{cases}$$

• Interpretation of the Wronskian:

If
$$W[y_1,y_2](t) = 0$$
, then $\{y_1,y_2\}$ is not a fundamental set of solutions.

If
$$W[y_1,y_2](t) \neq 0$$
, then $\{y_1,y_2\}$ is a fundamental set of solutions.

• The Wronskian only needs to be checked at a single value of *t* in the interval where the solution exists.

Is the following initial value problem guaranteed to have a unique solution? If so, on what interval is it guaranteed to exist?

$$y'' - \sec(t)y' + (t^2 + 1)y = \sqrt{3t - 7}, \quad y(3) = -3, \quad y'(3) = 2.$$

need cos(t) #0

$$cos(t) = 0$$
 when $t = \pm \frac{\pi}{2}, \pm \frac{3\pi}{2}, \dots$

$$3t-720 \Rightarrow 3t \ge 7 \Rightarrow t \ge \frac{7}{3}$$

$$t$$
 IVP has a unique solution on $\left(-\frac{7}{3}, \frac{3\pi}{2}\right)$.

Exercise 2

Is the following initial value problem guaranteed to have a unique solution? If so, on what interval is it guaranteed to exist?

$$tf'' + \sin(t)f' + \ln(t+2)f = 8,$$
 $f(-1) = 7,$ $f'(-1) = -4.$

Write into standard form:
$$f'' + \frac{\sin(t)}{t} f' + \frac{\ln(t+2)}{t} = \frac{8}{t}$$
.

Do $y_1(t)=e^t$ and $y_2(t)=e^{-3t}$ form a fundamental set of solutions for the following differential equation?

$$y'' - 3y' + 3y = 0.$$

First, check if they are even solutions.

$$y_i = e^t$$
 $y_i' = e^t$
 $y'' = e^t$
 $y''' = e^t$
 $e^t = 0$
 $e^t = 0$

So, no, they are not a fundamental set of solutions.

Exercise 4

Do $y_1(t)=e^t$ and $y_2(t)=t+1$ form a fundamental set of solutions for the following differential equation?

$$ty'' - (t+1)y' + y = 0, t < 0.$$

Check if they are solutions:

Check the Wronskian:

$$W[y_{1},y_{2}](-1) = \begin{vmatrix} y_{1}(-1) & y_{2}(-1) \\ y_{1}'(-1) & y_{2}'(-1) \end{vmatrix} = \begin{vmatrix} e^{-1} & 0 \\ e^{-1} & 1 \end{vmatrix} = e^{-1} \neq 0$$

Yes, they form a fundamental set of solutions.

Do $y_1(t) = \cos(t)$ and $y_2(t) = \sin(t + \pi)$ form a fundamental set of solutions to the following differential equation?

$$y'' + y = 0.$$

First, are they solutions?

$$y_1 = \cos(t)$$

 $y_1' = -\sin(t)$
 $y_1'' = -\cos(t)$
=> $-\cos(t) + \cos(t) = 0$

$$y_{2} = 5 : n (t - \frac{\pi}{2})$$

$$y_{2}' = cos (t - \frac{\pi}{2})$$

$$y_{2}'' = -5 : n (t - \frac{\pi}{2})$$

$$= -5 : n (t - \frac{\pi}{2}) + 5 : n (t - \frac{\pi}{2}) = 0$$

Check the Wronskian:

$$W[y_{1},y_{2}](0) = \begin{vmatrix} y_{1}(0) & y_{2}(0) \\ y_{1}(0) & y_{2}(0) \end{vmatrix} = \begin{vmatrix} \cos(0) & \sin(-\pi) \\ -\sin(0) & \cos(-\pi) \end{vmatrix} = \begin{vmatrix} 1 & -1 \\ 0 & 0 \end{vmatrix} = 0$$

Since the Wronskian is O, these are not a fundamental set of solutions.

Show that $y(t) = c_1 t + c_2 t \ln(t)$ is the general solution to the differential equation,

$$t^2y'' - ty' + y = 0, t > 0.$$

$$y_{1}(t) = t$$
 $y_{2}(t) = t (n t)$
 $y_{1}(t) = 1$ $y_{2}(t) = (n t) + t = (n t) + 1$
 $y_{1}(t) = 0$ $y_{2}(t) = \frac{t}{t}$

Are they solutions?

Check the Wronskian:

$$W[y_{1}|y_{2}](1) = \begin{vmatrix} y_{1}(1) & y_{2}(1) \\ y_{1}'(1) & y_{2}'(1) \end{vmatrix} = \begin{vmatrix} 1 & 0 \\ 1 & 1 \end{vmatrix} = 1 \neq 0$$

3.3 & 3.4: SECOND ORDER LINEAR ODES

Review

• A second order linear ODE with constant coefficients has the form

$$ay'' + by' + cy = g(t).$$

- It is homogeneous if g(t) = 0.
- Process for **solving** a second order homogeneous linear ODE:
 - 1. Look for solutions of the form $y(t) = e^{rt}$.
 - 2. Find the characteristic equation.
 - 3. Find the roots of the characteristic equation.
 - 4. The general solution is given by

- Distinct real roots:
$$y(t) = C_1 e^{r_1 t} + C_2 e^{r_2 t}$$

- Complex roots:
$$y(t) = c, e^{at} cos(bt) + c_2 e^{at} sin(bt)$$
 $(r = a \pm ib)$

- Repeated real roots:
$$g(t) = c_1 e^{rt} + c_2 t e^{rt}$$

5. If you have initial conditions, use them to solve for c_1 and c_2 .

Find the general solution to the differential equation

$$y'' + 10y' + 25y = 0.$$

Plug in
$$y = e^{rt}$$
:

 $r^2e^{rt} + 10re^{rt} + 25e^{rt} = 0$
 $r^2 + 10r + 25 = 0$ — characteristic equation

 $(r+5)^2 = 0$
 $r = -5$

Plug into the repeated roots equation:

Exercise 8

Find the general solution to the differential equation

$$y'' - 9y' + 20y = 0.$$

$$r^2 - 9r + 20 = 0$$

$$(r-4)(r-5)=0$$

Plug into the distinct roots equation:

$$y(t) = c_1 e^{4t} + c_2 e^{5t}$$

Solve the initial value problem

$$f'' - 2f' + 8f = 0$$
, $f(0) = 0$, $f'(0) = 1$.

Characteristic equation:

$$r^2 - 2r + 8 = 0$$

$$V = \frac{2 \pm \sqrt{9-4(8)}}{2} = 1 \pm \frac{\sqrt{-28}}{2} = 1 \pm i\sqrt{7}$$

General solution:

$$f(t) = c_1 e^t \cos(\sqrt{7}t) + c_2 e^t \sin(\sqrt{7}t)$$

Use the initial conditions to solve for c, and c2:

$$f(0) = C_1 e^{2} \cos(0) + c_2 e^{2} \sin(0) = C_1 = 0$$

$$f(t) = c_2 e^t sin (57t)$$

$$f'(0) = c_2 e^{o} \sin(0) + \sqrt{7} c_2 e^{o} \cos(0) = \sqrt{7} c_2 = 1$$

$$\Rightarrow$$
 $c_2 = \frac{1}{\sqrt{7}}$

$$f(t) = \frac{1}{\sqrt{7}} e^t \sin(\sqrt{7}t)$$

Find the general solution to the differential equation

$$4g'' + g = 0.$$

Characteristic equation:

$$r = \pm \frac{1}{2}i$$

General solution:

$$\int_{0}^{\infty} g(t) = c_{1} \sin\left(\frac{1}{2}t\right) + c_{2} \cos\left(\frac{1}{2}t\right)$$

Exercise 11

Find the general solution to the differential equation

$$3y'' - 2y' - y = 0$$

Characteristic equation:

$$3r^{2}-2r-1=0$$

$$V = \frac{2 \pm \sqrt{4 - 4(-1)(3)}}{2(3)} = \frac{2 \pm \sqrt{16}}{6} = \frac{2 \pm 4}{6} = \frac{-1}{3}, 1$$

General solution:

$$g(t) = c_1 e^{-\frac{1}{3}t} + c_2 e^t$$

Solve the initial value problem

$$f'' - 4f' + 4f = 0,$$
 $f(0) = 2,$ $f'(0) = -1.$

Characteristic equation:

$$r^2 - 4r + 4 = 0$$

$$(r-2)^2 = 0$$

$$r = 2$$

General solution:

$$f(t) = c_1 e^{2t} + c_2 t e^{2t}$$

Use ICs to solve for c, and cz:

$$f'(t) = 2c_1e^{2t} + c_2e^{2t} + 2c_2te^{2t}$$

$$f(0) = c_1 e^0 + 0 = c_1 = 2$$

$$f'(0) = 2c_1e^0 + c_2e^0 + 0 = 2c_1 + c_2 = -1$$

$$\Rightarrow$$
 2(2)+c2 = -1

$$C_z = -5$$

$$f(t) = 2e^{2t} - 5te^{2t}$$