Math 251/221. WEEK in REVIEW 3. Fall 2024

- (a) Find the angle between the planes x 2y + z = 1 and 2x + y + z = 1.
 (b) Find symmetric equation for the line of intersection of the planes.
 - (b) Find symmetric equation for the line of intersection of the planes.
- 2. Find the distance from the point (1, -2, 4) to the plane 4x 6y + 2z = 3.
- 3. Match the equation with its graph. Give reasons for your choice.
 - a) $x^2 + 4y^2 + 9z^2 = 1$ b) $x^2 - y^2 + z^2 = 1$ c) $y = 2x^2 + z^2$ d) $x^2 + 2z^2 = 1$ e) $9x^2 + 4y^2 + z^2 = 1$ f) $-x^2 + y^2 - z^2 = 1$ g) $y^2 = x^2 + 2z^2$ h) $y = x^2 - z^2$

- 4. Reduce the equation to the standard form and classify the surface.
 - (a) $z = (x-1)^2 + (y+5)^2 + 7$
 - (b) $4x^2 y^2 + (z 4)^2 = 20$
 - (c) $x^2 + y^2 + z + 6x 2y + 10 = 0$
- 5. Find the domain of $\mathbf{r}(t) = < \ln(4-t^2), \sqrt{1+t}, \sin(\pi t) >$.
- 6. Find a vector equation for the curve of intersection of the surfaces $x = y^2$ and z = x in terms of the parameter y = t.

- 7. Does the graph of the vector-function $\mathbf{r}(t) = \left\langle \frac{1-t^2}{t}, \frac{t+1}{t}, t \right\rangle$ lie in the plane x y + z = -1?
- 8. Find the points where the curve $\mathbf{r}(t) = \langle 1 t, t^2, t^2 \rangle$ intersects the plane 5x y + 2z = -1.
- 9. Find parametric equations of the line tangent to the graph of $\mathbf{r}(t) = \langle e^{-t}, t^3, \ln t \rangle$ at the point t = 1.
- 10. Find symmetric equations of the line tangent to the graph of $\mathbf{r}(t) = \left\langle t^2, 4 t^2, -\frac{3}{1+t} \right\rangle$ at the point (4, 0, 3).
- 11. Let

$$\mathbf{r}_1(t) = < \arctan t, t, -t^4 >$$

and

$$\mathbf{r}_2(t) = \langle t^2 - t, 2\ln t, \frac{\sin(2\pi t)}{2\pi} \rangle$$

- (a) Show that the graphs of the given vector-functions intersect at the origin.
- (b) Find their angle of intersection at the origin.

12. Evaluate the integral
$$\int_{1}^{4} \left(\sqrt{t} \mathbf{i} + t e^{-t} \mathbf{j} + \frac{1}{t^2} \mathbf{k} \right) dt$$

- 13. A moving particle starts at an initial position $\mathbf{r}(0) = \langle 1, 0, 0 \rangle$ with initial velocity $\vec{v}(0) = \mathbf{i} \mathbf{j} + \mathbf{k}$. Its acceleration is $\vec{a}(t) = 4t\mathbf{j} + 6t\mathbf{j} + \mathbf{k}$. Find its velocity and position at time t.
- 14. Find the length of the curve given by the vector function $\mathbf{r}(t) = \cos^3 t \, \mathbf{i} + \sin^3 t \, \mathbf{j} + \cos(2t) \, \mathbf{k}, \ 0 \le t \le \frac{\pi}{2}$.
- 15. For the curve given by $\mathbf{r}(t) = \langle \sin^3 t, \cos^3 t, \sin^2 t \rangle, \ 0 \le t \le \frac{\pi}{2}$, find
 - (a) the unit tangent vector $\mathbf{T}(t)$
 - (b) the unit normal vector $\mathbf{N}(t)$
 - (c) the binormal vector $\mathbf{B}(t)$
 - (d) the curvature
- 16. A particle starts at the origin with initial velocity $\mathbf{i} \mathbf{j} + 3\mathbf{k}$. Its acceleration is $\mathbf{a}(t) = 6t\mathbf{i} + 12t^2\mathbf{j} 6t\mathbf{k}$. Find its position function.

Review for Exam 1.

- 1. Find the center and radius of the sphere given by the equation $2x^2 + 2y^2 + 2z^2 = 8x 24z + 1$.
- 2. If $\mathbf{a} = 4\mathbf{i} 3\mathbf{j} + 2\mathbf{k}$ and $\mathbf{b} = 2\mathbf{i} 4\mathbf{k}$, find $4\mathbf{a} + 2\mathbf{b}$, $|\mathbf{a} \mathbf{b}|$, $\mathbf{a} \cdot \mathbf{b}$, $\mathbf{a} \times \mathbf{b}$.
- 3. Find the vector of length 6 in the direction of $8\mathbf{i} \mathbf{j} + 4\mathbf{k}$.
- 4. Find the scalar and vector projections of the vector $3\mathbf{i} 3\mathbf{j} + \mathbf{k}$ onto the vector $2\mathbf{i} + 4\mathbf{j} \mathbf{k}$.
- 5. Find the volume of the parallelepiped with adjacent edges PQ, PR and PS, if P(-2,1,0), Q(2,3,2), R(1,4,-1), S(3,6,1).
- 6. (a) Find an equation of the plane that passes through the points A(2,1,1), B(-1,-1,10), and C(1,3,-4).
 - (b) Find symmetric equations for the line through B that is perpendicular to the plane in part (a).
 - (c) A second plane passes through (2, 0, 4) and has the normal vector (2, -4, -3). Find an equation of the plane.

- (d) Find the angle between planes in parts (a) and (c).
- (e) Find parametric equations for the line of intersection of the planes in parts (a) and (c).
- 7. (a) Find the point of intersection for the lines $\mathbf{r}_1(t) = \langle 1, 1, 0 \rangle + t \langle 1, -1, 2 \rangle$ and $\mathbf{r}_2(s) = \langle 2, 0, 2 \rangle + s \langle -1, 1, 0 \rangle$
 - (b) Find an equation of the plane that contains these lines.