Math 251/221

WEEK in REVIEW 6.

- 1. Find the integral $\iint_R \frac{y \cos y}{x} dA$, where $R = \{(x, y) | 1 \le x \le e^4, 0 \le y \le \pi/2\}.$
- 2. Evaluate $\iint_D \frac{y}{\sqrt{1+x^2}} dA$ where D is the region in the first quadrant bounded by $x = y^2$, x = 4, y = 0.
- 3. Evaluate $\int \int_R y^2 \sin \frac{xy}{2} dA$ where R is the region bounded by $x = 0, y = \sqrt{\pi}, y = x$.
- 4. Evaluate $\int_0^2 \int_{y/2}^1 e^{x^2} dx dy$ by reversing the order of integration.
- 5. Evaluate $\int_0^1 \int_{2x^2}^2 x^3 \sin y^3 \, dy \, dx$.
- 6. Graph the region and change the order of integration.

a)
$$\int_0^1 \int_0^{x^-} f(x,y) dy \, dx + \int_1^2 \int_0^{2-x} f(x,y) dy dx$$

b) $\int_0^1 \int_0^{\sqrt{y}} f(x,y) dx dy + \int_1^{\sqrt{2}} \int_0^{\sqrt{2-y^2}} f(x,y) dx dy$

- 7. Let the region D be the parallelogram with the vertices (0,0), (1,2), (5,4), and (4,2). Write the double integral $\iint_D f(x,y) dA$ as a sum of iterated integrals (with the least number of terms).
- 8. Sketch the region bounded by $y^2 = 2x$ (or $x = \frac{y^2}{2}$), the line x + y = 4 and the x-axis, in the first quadrant. Find the area of the region using a double integral.

9. Describe the solid which volume is given by the integral $\int_0^2 \int_{y^2}^4 (x^2 + y^2) dx dy$ and find the volume.

- 10. Find the volume of the solid bounded by
 - z = 1 + x + y, z = 0, x + y = 1, x = 0, y = 0.
- 11. Sketch the curve $r^2 = \cos 2\theta$. Find the area inside the curve.
- 12. Use a double integral in polar coordinates to evaluate the area of the region inside the circle $r = 4 \sin \theta$ and outside the circle r = 2.
- 13. Use polar coordinates to evaluate

$$\int_{-1}^{1} \int_{-\sqrt{1-y^2}}^{\sqrt{1-y^2}} \ln(x^2 + y^2 + 1) \, dx \, dy$$

14. Find the volume of the solid bounded by the surfaces

$$z = \sqrt{64 - x^2 - y^2}$$
 and $z = \frac{1}{12}(x^2 + y^2)$

15. Express the integral $\iiint_E f(x, y, z) dV$ as an iterated integral in six different ways, where E is the solid bounded by the surfaces $y = x^2$, z = 0, y + 2z = 4.