TEXAS A&M UNIVERSITY Math 308 — Week-in-Review
:‘FW Math Learning Center Week 5 Exam 1 review

CHARACTERIZING DIFFERENTIAL EQUATIONS

Review
e The order of a differential equation is the order of the highest derivative.

e Ordinary vs partial differential equations

- A ordinary differential equation has derivatives with respect to one variable.
- A partial differential equation has derivatives with respect to more than one variable.

e | inear ODEs

- A linear ODE has the form

an(2)y™ (2) + ... + ar(@)y () + ao(2)y(x) = g(x).

Said another way, it satisfies the following conditions:

* All the y's are in different terms.

* None of the y's are inside a function or to a power.
* The y's can be multiplied by a function of x.

* There can be terms that depend only on z.

e Homogeneous linear ODEs

- Alinear ODE is homogeneous if the g(¢) term is 0.
e Separable ODEs

- An ODE is separable if you can write it in the form ¢ = f(x)g(y).
e Autonomous ODEs

- An ODE is autonomous if the dependent variable (x) does not show up explicitly. i.e, if z
does not show up outside of y.
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Exercise 1

Classify the following differential equations. In particular, put it into one (or more) of the following
categories and state the order.

Partial differential equation
Ordinary differential equation

— Separable
- Linear
* Homogeneous

- Autonomous

Y=y +6=0

Zhlﬂwﬁ{b’ /ihar 4»1 a,w'![o»nmms OoDE

Je—Jy=2f
[9* aw(,w PDE
@t =) =yt (x® 333 =0
| 7 oden me?a‘em; liv.car ODE
g = a®sin(g)
I%ow(w ﬁfiodvtuef ODE
sin(z)w” +w -3 =0

3 Nlaw(aw [ineav ODF

- u"(z) = sin(u(z))

Z.ML order 2ulonomons ODE

f©® — cos(x?) f" — tan(x) f = 3tan(z)

o ond s /)nw ODE
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SOLVING DIFFERENTIAL EQUATIONS

Review

e First order ODEs

- You do NOT need to guess which method to use to solve a 1st order ODE!
- How to determine which method to use:

1. Is the equation separable?
If yes, use separation of variables.

2. Is the equation linear?
If yes, use the method of integrating factors.

2'. Is it a Bernoulli equation'?
If yes, then use v = y' ™.

3. Is the equation exact?
If yes, then use the method for exact equations.

3. Is it a homogenous equation??
If yes, then use v = y/x to get a separable equation.

4. If none of the above, then try to find an integrating factor to make the equation exact.?
e Second order linear ODEs

- Homogeneous with constant coefficients

1. Look for solutions of the form y(t) = e".
2. Find the characteristic equation.
3. Find the roots of the characteristic equation.
4. The general solution is given by
* Distinct real roots: cje™! 4 coe™!
* Complex roots: ¢je cos(bt) + coe® sin(bt)
* Repeated real roots: ¢ e’ + cote™
5. If you have initial conditions, use them to solve for ¢; and c,.

- Nonhomogeneous

* Method of undetermined coefficients (if constant coefficients and you can guess)
* Variation of parameters

A Bernoulli equation has the form ¢’ + p(t)y = q(t)y™. Not all instructors cover this. You can find examples of Bernoulli
equations in Section 2.4 of the textbook, #23-25.

2Thisis NOT the same as the homogeneous linear equations that are covered in Chapter 3. The terminology is confusing.
‘Homogeneous equation” here refers to a 1st order ODE that can be written in the form ¢’ = f(£). Not all instructors cover
this. You can find examples of these in Section 2.2 of the textbook, #25-31.

3Not all instructors cover making an equation exact by using an integrating factor.
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Exercise 2

Find the general solution to
t2y +ty —t=0.

Py g e

'(’“ S

—

u

Lol =
_ A
/u"i ;(%y>: I”é’/
‘é‘yl{’) = ‘é“C

——
=
n
_l,
dxln
—

Exercise 3
Solve the initial value problem
u —tu =0, u(l)=-1
A
~& . i > wll)=3

-\_S

—é—aB::‘ —7-,'—{14-(, C= 72
2 3 3,% 5

W= 347c w'= 3¢t -"%
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Exercise 4

Find the general solution to

fN:Sf/_Qf-
f -34+24=0
re-3-+2=0

(r —/)(r-2> =0

2€
Ll)=c ettc,e

Exercise 5

Find the general solution to
w” + 4w’ + 4w = 5e'.

rotfe+ 4 =0 Guess w, () = At
(r+2) *=0
r=-1 Aetdpct etget =5t
_ t g, t
Wh({')l c’ezf_t_c?—{e-z{- e S5¢
94 =5
A =%

_2¢ _2¢
wld)=ce <, e +%-a%
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Exercise 6

Find the general solution to
(4z — 2y)y' + 4y = —2x.

2x +49 +(4x-29) 4" = O
M7 =4 = Me=q l/éxac’f

V/X :Zx +L{7 71/: XZ‘(J’/X7 +((7)
=
>U b L/X "27 ‘7”: ij ——yl~(—C(;<\

L}/(x,y) :f;"#/xy =Y ‘= d

Exercise 7

Find the general solution to
39" — 24" +4g = 0.

3V‘z~2v~ +~4 <0
S~ 2EJ-AEE) , -
— = 1 £ J-
2(3) 3 = ‘
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Exercise 8

Solve the initial value problem

f=—=f" FO)=-2, f(0)=1.

9
;)_'p < £=0 ‘r/‘)[*(-)= C,(a$[3"')+(7_9n('3{—)
-'\"V'L‘l‘):O \
? . IQ((’)=—3c,sn(?+)+3c_2cg5(3{—)
r-=-9
r= %3¢ 4L(0)=¢c, = -2
#\/4)2 3¢, = | 2ec.= ’/3

tl/—f) = 2es (3O * + 53(3¢)

Exercise 9

Find a that makes the equation exact.

2 4 y* 4 2xyy’ = 0.
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Exercise 10

Solve by first finding an integrating factor that makes the equation exact.

f/l ﬂ&eféwng‘) 0h(7 on ¥

é& = /Lty "A/x
A N .
- -2
2)(7 Y

Cu nnt 0(74-/{ ow Y

—

y+ (2zy —e )y = 0.

pe 49441/{5 eae on 77

f/ﬁ: Nx’My
dy M

_ 2y

L_;_y___)

/A

de@dwx//
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e’ + yTe 27(&; -6-27)7\ =0

@271- (ZX 627— 7\‘) 7\ =0

(7‘:: e Y= ke%*’“‘?\

—_—

T,=Uce 757" 4=y e —fu/7/*'<m

Tx9) :{;ezy“(“/ﬂ -

ov 730
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Exercise 11

Suppose you wanted to use the method of undetermined coefficients to find a particular solution to
y// . 5y/ + 6y — 4672t + 3t3

What is an appropriate guess for the particular solution y,?

[ —_ - 2
rc—5.+6 =0 Yo )= AT L Be% Ct De<F
(r-3X-D =0
k‘:?,?

yhl{') = ¢ e, e’t

Exercise 12

Suppose you wanted to use the method of undetermined coefficients to find a particular solution to
y' — 2y +y = 3e" —tsin(t).

What is an appropriate guess for the particular solution y,,?

rc->2« +, =0 yf /‘é)‘; A,éze'é +(51L“C)(Dgiw[‘{') +Eca$(~“)
(r-)" =0

r=|

w(%) = C,eiefczzfe"5
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Exercise 13

Given that 22 and ! are solutions to the corresponding homogeneous equation, find a particular so-
lution to
22y’ —2y=32>—1, z>0.

3“— Zx"zj = 3—x"
o ) % © X
W[’(\x’ (X\" 7. 'X~l = ~|-2=-3

-

~ z X-'('i-x‘) N 2/ o -
T R x(:x)/@(

‘3/‘>(L (3><"—><' >,(,< —éx‘:f(xl_ ;>oe,<
- éxl(3(a(>< *—;_-x“z>"3“><"(x3—><>
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ANALYSIS OF ODES

Review
e \Where is a solution valid?

— Solution is valid on a single interval where the solution is a function that is defined and
differentiable.

e Existence and uniqueness

- 1st order linear ODEs: If p and g are continuous on an interval I = (a, b) containing the initial
condition t,, then the initial value problem

y +pt)y =g(t),  ylte) = wo

has a unique solution on I.

. . 0 : :
- 1st order nonlinear ODEs: Let the functions f and O_f be continuous in some rectangle
Y
(a,b) x (c,d) containing the point (¢y, o). Then, there is a unique solution to the initial value

problem
v =rfty),  ylto) =
on a sufficiently small interval I, = (to — h,to + h) around t,.
- 2nd order linear ODEs: Consider the initial value problem

y' +opt)y +qt)y =g(t),  ylto) =vo, ¥ (to) = o

If p, ¢, and g are continuous on an open interval I = (a,b) that contains the point ¢, then
there is exactly one solution to the initial value problem and the solution exists throughout
the entire interval I.

The Wronskian of y; and s, is defined by
) 1(t) ’
) )

{y1,y2} is a fundamental set of solutions means that the general solution is ¢1y; + cays.

Slope fields

Equilibrium solutions

Stability of equilibrium solutions

- (Asymptotically) stable: If you start near it, you go in towards it.
- Unstable: If you start near it, you go away from it.

- Semistable: If you start near on one side, you go towards it, but if you start near on the other
side, you go away from it.

Phase line diagrams
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Exercise 14

Without solving the initial value problem, where is a unique solution guaranteed to exist?

y —ttan(t)y = V4 —t, y(0)=m.

. St €
771 D '"77- 1 31‘/?': Ll

anriuc So/;p(hn\ t e IVP CXL‘S'{S on (—77:.) 177,)

Exercise 15

Without solving the initial value problem, where is a unique solution guaranteed to exist?

(t—Dw”" +w' —In(t+3)w =t>cos(t), w2)=-2 w'(2)="7.

e =Ll ) 2,4
£€-1 &-1 v

(/("""ZM, 6,/‘,,‘{.‘0»\ é.fo‘}s on (’,005.
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Exercise 16

For which values ¢, and v, is the following initial value problem guaranteed to have a unique solution?

'y — (t+y)y =0, ylto) =y
Eg =% 1

j\z _‘é_izj- = #(4‘7\)
Ly ?

£ G‘:\‘/)foj - f; (1)
% z
(£+y)

T/M«vc 3 A angee 9,/,,‘[’% as

/0»:7 as joqg_fo,

Exercise 17

Show that z and ze® form a fundamental set of solutions to

2y —x(x+2)y +(x+2y=0, z>0.

7! =X 77' :Xex
\ X x
7‘l: 51’ = Xt < e
Y, ‘=0 j-,.“= xe¥e2e™
X% 0 -x(x *25(1) f(xﬂ)x =0 x"(x;/‘1~2¢)<> ~X (xﬂ)(x/):/) +(><+2))</:O
0:0/ XS-(-ZX‘L,.X()("‘-&)\(*—L\J\— x"--r?)( =0

U T BT B T 2 0./

_ g (1) 9, (1) | e
W(x,xe J(’) = /‘1,\“) %-\(') /:/l Ze,/: 7¢c-c=e #O

Ty {x, %3 15« Ludiraitl oot of $olotim s Page 13 of 15
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Exercise 18

Solve for the explicit solution u(z). Where is the solution to the initial value problem valid? How does
this depend on a?

/tj ={Ax (u. ?{0)
/2
/_(i =0
-/ A x
-u = X+C
P(H,] hv‘l'ﬂ Jﬁ‘p{ Q‘
2
0:0 l/
-1
- = 0O-+C Wix\ =0 (3 a 5,[;‘(0»‘
c=t
A
NGy = , ;10 a0
X~ 2

wi\=0 £ a=0.

a =0 veld Au —oe & x <o

o) Vi

Ua(.‘é{éw _o°<)(<._(
X2

R

'/a o

vald for L cxcom
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Exercise 19

Consider the differential equation

fr=r1=27(f-4)

a) Find the equilibrium solutions

b) Draw the phase line diagram

d

(a)

(b)

(c) Sketch the slope field
(d) Determine the stability of each equilibrium solution
()

e) Determine tlim f(¢) for different initial values f(0).
—00

() ‘p\ LU 4)=0

[#:0, 2,7

(p() O S g"éul!l@) 2— 3 QZW;S'['QL(G) H s qu{qb(c

(e) T€ 4 < 2, He P& > 0.
T 2eftdey, Hew £14) — 2.
TL £0) =9y Hew +(H D4
Lt £ o) >q e -'L({)éao. Page 15 of 15



