

Math 150 - Week-In-Review 9

PROBLEM STATEMENTS

2. Solve using whichever method you choose:
$$\begin{cases} (x+4)^2 + y^2 = 4 \\ y - \sqrt{x} = 0 \end{cases}$$

$$(x+4)^{2} + (\sqrt{x})^{2} = 4 \longrightarrow x^{2} + 8x + 10 + x = 4$$

$$x^{2} + 9x + 12 = 0$$

$$x = -9 - \sqrt{33} < 0$$

$$x = -9 + \sqrt{33} < 0$$

$$x = -9 + \sqrt{33} < 0$$

⇒No solutions!

Z extrancous Since from TX

3. Find all solutions to the system of equations

$$x^{4} + 144 = 25x^{2}$$
 $(x^{2})^{2} - 25x^{2} + 144 = 0$
 $u^{2} - 25u + 144 = 0$

$$(u-2bu+14u=0)$$

 $(u-16)(u-9)=0 \longrightarrow u=16 \longrightarrow x^2=16 \longrightarrow x=\pm 4$
 $u=9 \longrightarrow x^2=9 \longrightarrow x=\pm 3$

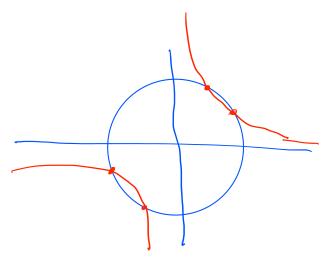
$$x = 4 \longrightarrow y = 3$$

$$x = -4 \longrightarrow y = -3$$

$$x = 3 \longrightarrow y = 4$$

$$x = -3 \longrightarrow y = -4$$

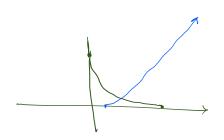
Solutions:



4. Determine all solutions to the system:

$$\begin{cases} \sqrt{x} + \sqrt{y} = 5\\ \sqrt{x} - \sqrt{y} = 1 \end{cases}$$

$$2\sqrt{x} = 6 \rightarrow \sqrt{x} = 3 \rightarrow x = 9$$



$$\sqrt{9} + \sqrt{9} = 5$$
 $3 + \sqrt{9} = 5 \rightarrow \sqrt{9} = 2$
 $(9,4)$

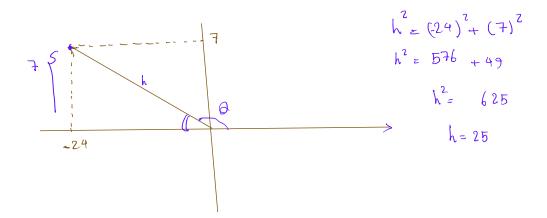
5. Convert 75° to radians.

$$75^{\circ} = 75.(1^{\circ}) = 75(\frac{77}{180} \text{ rad}) = \frac{577}{12}$$
 Radians

6. Convert $\frac{19\pi}{12}$ to degrees.

$$\frac{19\,\pi}{12}$$
 rod = $\frac{19\,\pi}{12}$. (1 rod) = $\frac{19\,\pi}{12}$ ($\frac{180}{\pi}$ °) = $19\,\times$ 16° = 285 °

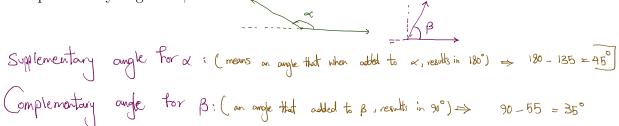
7. Let (-24,7) be a point on the terminal side of θ . Find the sine, cosine of θ .



$$\cos \theta = \frac{adj}{hyp}. = \frac{-27}{25}$$

Sind =
$$\frac{off}{hyp}$$
 = $\frac{7}{25}$

8. Let $\alpha = 135^{\circ}$ and $\beta = 55^{\circ}$. Sketch α and β . Compute a supplementary angle for α . Compute a complementary angle for β .



9. Suppose α is an acute angle with $\cos(\alpha) = \frac{3}{5}$. Determine $\sin(\alpha)$ and use this to plot α in standard position. State the sine and cosine of the following angles:

Using
$$\frac{5}{3}$$
 \Rightarrow $9+x^2=25 \Rightarrow x=4 \Rightarrow \sin \alpha = \frac{4}{5}$

(a)
$$\theta = \pi + \alpha$$

$$Sin(\pi + \alpha) = -Sin\alpha = -45$$

 $Cos(\pi + \alpha) = -65\alpha = -3/5$

(b)
$$\theta = 2\pi - \alpha$$

$$Sin(2\pi - \alpha) = -Sin\alpha = -\frac{4}{5}$$

$$Cos(2\pi - \alpha) = Cos\alpha = \frac{3}{5}$$

(c)
$$\theta = 3\pi - \alpha$$

$$\sin(3\pi - a) = \sin a = \frac{4}{5}$$

 $(6s(3\pi - a) = \cos a = -3/6$

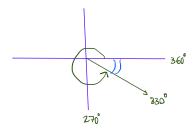
(d)
$$\theta = 2\pi + \alpha$$

$$\sin(2\pi + \alpha) = \sin \alpha = \frac{4}{5}$$

Cos $(2\pi + \alpha) = 63\alpha = 3/5$

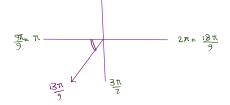
10. Find the reference angle for:

a)
$$\theta = 330^{\circ}$$



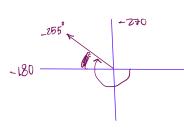
b)
$$\theta = \frac{13\pi}{9}$$

$$\left(\frac{13\pi}{9} = \frac{26\pi}{18}\right) < \frac{3\pi}{2} = \frac{27\pi}{18}$$



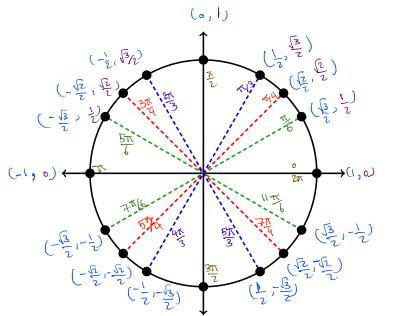
$$\frac{137}{9} - \pi = \frac{4\pi}{9}$$

c)
$$\theta = -255^{\circ}$$
.



$$-255 - (-180) = -75^{\circ}$$
or
$$-255^{\circ} + 360^{\circ} = 105^{\circ}$$

$$180^{\circ} - 105^{\circ} = 75^{\circ}$$



(Cosx, Sinx)

11. Evaluate the following:

a)
$$\sin \frac{4\pi}{3} = -\frac{\sqrt{3}}{2}$$

 $\sin \left(\pi + \frac{\pi}{3}\right) = -\sin(\frac{\pi}{3})$

b)
$$\cos \frac{4\pi}{3} = -\cos(\frac{\pi}{3}) = -\frac{1}{2}$$

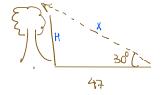
a)
$$\sin 315^{\circ}$$
 = $\sin (360^{\circ} - 45^{\circ})$ = $\sin (-45^{\circ})$
= $-\frac{\sqrt{2}}{7}$

12. Use the reference angle to find the indicated trigonometric value for the specified angles.

(a)
$$\sin\left(\frac{7\pi}{6}\right) = \sin\left(\pi + \frac{\pi}{6}\right) = -\sin\left(\frac{\pi}{6}\right) = -\frac{\pi}{2}$$

(b)
$$\cos\left(\frac{11\pi}{4}\right) = \cos\left(3\pi - \frac{\pi}{4}\right) = -\cos\left(\frac{\pi}{4}\right) = -\frac{\sqrt{2}}{2}$$

13. From a point on the ground 47 feet from the foot of a tree, the angle of elevation of the top of the tree is 30°. Find the height of the tree.



$$Cos \theta = \frac{ady}{hyg}$$

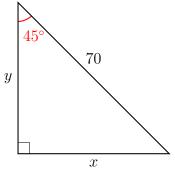
$$\frac{\sqrt{3}}{2} = \frac{47}{x} \longrightarrow x = \frac{94}{\sqrt{3}}$$

$$Sin(30^{\circ}) = \frac{099}{\text{hyp.}}$$

$$\frac{1}{2} = \frac{H}{\frac{94}{\sqrt{3}}} \longrightarrow H = \frac{94}{2\sqrt{3}} = \frac{47}{\sqrt{3}}$$

$$H = \frac{94}{2\sqrt{3}} = \frac{47}{\sqrt{3}}$$

14. Find the exact value of x and y.

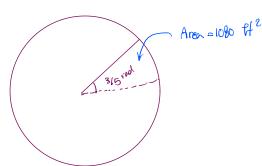


$$Sin(45^\circ) = \frac{\sqrt{2}}{2}$$

$$\frac{\chi}{70} = \frac{\sqrt{2}}{2} \implies \chi = \frac{70\sqrt{2}}{2} = 35\sqrt{2}$$

(cs (45°) =
$$\frac{\sqrt{2}}{2}$$

15. A circular sector created by a central angle of $\frac{3}{5}$ radians has an area of 1080 ft², determine the radius of the circle.



Area of a Circle
$$A = \pi r^2$$

Area of a sector with angle θ : $A = \frac{r^2 \theta}{2}$

$$(080 = \frac{v^{2}(\frac{3}{5})}{2}$$

$$\frac{5}{3} \times 2160 = v^{2}$$

$$5 \times 720 = v^{2}$$

$$V = +\sqrt{3600} = +60$$

16. The planet Neptune has an orbit that is nearly circular. It orbits the Sun at a distance of 4497 million kilometers and completes one revolution every 165 years. How long is a full path of Nepture around the Sun? Then find the linear velocity of Neptune as it orbits the Sun.

full path \Rightarrow one revolution Circumterence of circle $2\pi r$

$$C = 2\pi V$$

= $2\pi (4497) = 8894 \pi$ million km

