

Example 1 (15.6). Compute $\iiint_E x^2(y+z) \, dV$, where $E = [0,2] \times [0,3] \times [-1,1]$.

Example 2 (15.6). Compute $\int_{1}^{2} \int_{0}^{3z} \int_{0}^{\ln x} x e^{-y} dy dx dz$.

Definition (Type 2 Solid) A solid region E is of type 2 if it is of the form

$$E = \{ (x, y, z) \mid (y, z) \in D, u_1(y, z) \le x \le u_2(y, z) \}$$

where D is the projection of E onto the yz-plane.

In this case,

$$\iiint_E f(x,y,z) \, dV = \iint_D \left[\int_{u_1(y,z)}^{u_2(y,z)} f(x,y,z) \, dx \right] dA$$

Definition (Type 3 Solid) A solid region E is of type **3** if it is of the form

$$E = \{ (x, y, z) \mid (x, z) \in D, u_1(x, z) \le y \le u_2(x, z) \}$$

where D is the projection of E onto the xz-plane.

In this case,

$$\iiint_E f(x, y, z) \, dV = \iint_D \left[\int_{u_1(x, z)}^{u_2(x, z)} f(x, y, z) \, dy \right] dA$$

Example 3 (15.6). Consider the triple integral $\iiint_T 6y \, dV$, where T is the tetrahedron with vertices at (0,0,0), (1,0,0), (0,1,0) and (0,0,2).

(a) Write the iterated integral with all six possible orders.

(b) Evaluate the integral using one of the six orders.

Example 4 (15.6). Evaluate $\iiint_E x^2 dV$, where E is the solid bounded by $y = x^2$, z = 0, y + z = 6 and y = 1.

Example 5 (15.6). Find the volume of the solid bounded by the parabolic cylinder $y = x^2$ and the planes z = 0 and y + z = 4.

Example 6 (15.6). Find the volume of the solid bounded by the paraboloids $z = x^2 + y^2$ and $z = 8 - x^2 - y^2$

(a) using a double integral.

(b) using a triple integral.

Example 7 (15.6). Evaluate $\iiint_E 2y \, dV$, where E is the solid bounded by the paraboloid $y = 2x^2 + 2z^2$ and the plane y = 2.

Example 8 (15.7). Evaluate $\iiint_E 2xz \, dV$, where E is the solid in the first octant within the cylinder $x^2 + y^2 = 1$, below the plane z = 6 and above the paraboloid $z = 1 - x^2 - y^2$.

Example 9 (15.7). Evaluate the integral by changing into cylindrical coordinates.

 $\int_{-2}^{2} \int_{0}^{\sqrt{4-y^2}} \int_{0}^{4-x^2-y^2} \sqrt{x^2+y^2} \, dz \, dx \, dy$

Example 10 (15.7). (Example 9 from WIR-6) Use cylindrical coordinates to find the volume of the solid between the cone $z = \sqrt{x^2 + y^2}$ and the ellipsoid $2x^2 + 2y^2 + z^2 = 12$.