

Example 1 (15.2). Set up double integrals with both orders of integration for $\iiint_R f(x, y) dA$, where R is the plane region bounded by $y = x^2$, x = 9 and y = 0.

Example 2 (15.2). Evaluate the integral $\int_0^1 \int_{x^2}^1 \sqrt{y} e^{y^2} dy dx$ by reversing the order of integration.

Example 3 (15.3). (a) Set up (but do NOT evaluate) a double integral using polar coordinates to compute the volume of the solid E that lies below the paraboloid $z = 1 + x^2 + y^2$ and above the region R between the circles $x^2 + y^2 = 1$ and $x^2 + y^2 = 4$ in the half-space $y \ge 0$.

(b) Use polar coordinates to compute the volume of the solid E that lies below the paraboloids $z = 5 - x^2 - y^2$ and $z = 4x^2 + 4y^2$.

Example 4 (15.3). *Rewrite (but do NOT evaluate) the integrals using polar coordinates.*

(a) $\int_{-5}^{5} \int_{0}^{\sqrt{25-x^2}} e^{x^2+y^2} \, dy \, dx.$

(b)
$$\int_0^6 \int_0^{\sqrt{6x-x^2}} (x^2 + y^2) \, dy \, dx$$

Example 5 (15.6). Evaluate $\iiint_E 6x \, dV$, where E lies under the plane x + y - z + 2 = 0and above the region in the xy-plane bounded by the curves $y = \sqrt{x}$, y = 0 and x = 4.

Example 6 (15.6). Set up the triple integral for the volume of the solid E in the order dz dx dy, where E is the solid bounded by $y = x^2$, z = 0, and y + z = 4.

Example 7 (15.6). Set up the triple integral in the order $\underline{dx \, dz \, dy}$ for $\iiint_E z \, dV$, where E is the solid bounded by $y^2 + z^2 = 4$, x = 0, y = 2x and z = 0 in the first octant.

Example 8 (15.7). Set up an integral using cylindrical coordinates to find the volume of the solid E that lies within the paraboloid $z = x^2 + y^2$ and between the plane z = 1 and z = 4.

Example 9 (15.7). Use cylindrical coordinates to set up a triple integral for the volume of the solid E

(a) that lies between the paraboloids $z = 8 - x^2 - y^2$ and $z = 3x^2 + 3y^2$.

(b) that lies within both the cylinder $x^2 + y^2 = 1$ and the sphere $x^2 + y^2 + z^2 = 4$.

(c) that lies below the paraboloid $z = 24 - x^2 - y^2$ and above the cone $z = 2\sqrt{x^2 + y^2}$.

Example 10 (15.8). Evaluate $\iiint_E \frac{x}{1 + (x^2 + y^2 + z^2)^2} dV$, where E is the solid between the spheres $x^2 + y^2 + z^2 = 1$ and $x^2 + y^2 + z^2 = 4$.

Example 11 (15.8). Use spherical coordinates to set up a triple integral for the volume of the solid E that lies below the sphere $x^2 + y^2 + z^2 = 5$ and above the cone $z = 2\sqrt{x^2 + y^2}$.

Example 12 (15.8). Convert (but do NOT evaluate) the integral

 $\int_{-3}^{3} \int_{0}^{\sqrt{9-y^2}} \int_{-\sqrt{9-x^2-y^2}}^{\sqrt{9-x^2-y^2}} y^2 \sqrt{x^2+y^2+z^2} \, dz \, dx \, dy$

into an iterated integral with spherical coordinates.

Example 13 (15.8). Consider the density function $\rho(x, y, z) = \sqrt{x^2 + y^2 + z^2}$ on the solid $E: x^2 + y^2 + z^2 \leq 4, z \geq 0$. Find the mass.

Example 14 (15.9). Use the transformation u = x - y and v = x + y to evaluate $\iint_{R} \frac{x - y}{x + y} dA$, where R is the trapezoidal region with vertices (1, 0), (3, 0), (0, 3), and (0, 1).

Example 15 (15.9). Evaluate the integral $\iint_R (x - 2y) e^{3x-y} dA$ by using an appropriate change of variables, where R is the region bounded by the lines

x - 2y = 0, x - 2y = 4, 3x - y = 1, and 3x - y = 8.