

Math 152 - Exam 3 Review

Sinjini Sengupta

Review of Maclaurin series.

1.
$$\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n$$

2. $e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}$
3. $\cos(x) = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{(2n)!}$
4. $\sin(x) = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{(2n+1)!}$
5. $\arctan(x) = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{2n+1}$
6. $\ln(1+x) = \sum_{n=0}^{\infty} \frac{(-1)^n x^{n+1}}{n+1}$

Evaluate the following integral as Power Series.

1.
$$f(x) = \int 5x^2 \arctan(7x^3) dx$$

2. Find a Power series representation of the functions $f(x) = \frac{x^2}{(5-3x)^2}$.

3. If
$$f(x) = \sum_{n=0}^{\infty} \frac{(3x)^n}{n!}$$
, find the power series for $f'(x)$ and $\int f(x) dx$. Identify $f(x)$.

4. Find the 25th derivative for the function $f(x) = \sum_{n=0}^{\infty} \frac{(-1)^n}{3^n(n+2)} x^n$ centered at x = 0.

Find the Taylor Series Representions for the following functions

5. $f(x) = xe^{3x}$ centered at x = 5

6. $f(x) = \ln(1+x)$ centered at a = 2

Find the Maclaurin Series Representation for the following functions.

7.
$$f(x) = \int_0^x e^{-t^2} dt.$$

8.
$$f(x) = x^3 \cos(2x)$$

Find the sum of the following series.

9.
$$f(x) = \sum_{n=0}^{\infty} \frac{(-1)^n (3)^n (\pi^n)}{n!}$$

10.
$$f(x) = \sum_{n=0}^{\infty} \frac{(-1)^n 3^{2n+1}}{(2n+1)!}$$

11.
$$f(x) = \sum_{n=0}^{\infty} \frac{(-1)^n 3^{2n+1}}{(2n)!}$$

12.
$$f(x) = \sum_{n=0}^{\infty} \frac{(-1)^n 3^{2n+1}}{2^{2n+1} (2n)!}$$

13. Find the third degree Taylor polynomial for $f(x) = \sqrt{x}$, centered at x = 4.

14. Find the second degree Taylor polynomial for $f(x) = \arctan(x)$, centered at x = 1.

15. Find the radius of convergence of the series $\sum_{n=1}^{\infty} \frac{3^n (x-5)^n}{n!}$

16. Given that the radius of convergence for the series $f(x) = \sum_{n=1}^{\infty} \frac{(-1)^n (x-3)^n}{2^n n^4}$ is 2, find the interval of convergence.

17. If the power series $\sum_{n=0}^{\infty} C_n (x-2)^n$ has a radius of convergence of 5. which of the following series will also converge?

(a)
$$\sum_{n=0}^{\infty} C_n 7^n$$

(b)
$$\sum_{n=0}^{\infty} C_n 5^n$$

(c)
$$\sum_{n=0}^{\infty} (-1)^n C_n 4^n$$

18. Which of the following series diverge?

(a)
$$\sum_{n=2}^{\infty} \frac{n^2 - 2n - 1}{n^3 + 4n}$$

(b)
$$\sum_{n=0}^{\infty} \frac{1}{n^2 + 2n + 4}$$

(c)
$$\sum_{n=1}^{\infty} ne^{-n^2}$$

(d)
$$\sum_{n=1}^{\infty} \frac{1}{n!}$$

(e)
$$\sum_{n=1}^{\infty} \frac{1}{n\sqrt{n}}$$

19. Which of these series converge absolutely?

(a)
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n}}$$

(b)
$$\sum_{n=1}^{\infty} \frac{(-1)^n e^n}{e^{n+1}}$$

(c)
$$\sum_{n=1}^{\infty} (\sqrt{n+2} - \sqrt{n})$$

(d)
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$$

(e)
$$\sum_{n=1}^{\infty} \frac{(-2)^n}{n!}$$

20. How many terms would be needed to approximate the sum of the series $\sum_{n=1}^{\infty} \frac{1}{n^5}$ to within 2×10^{-9} ?

21. Find the sum of the series $\sum_{n=1}^{\infty} \frac{1}{n^5}$ correct to 3 decimal places.

22. Using the 5th partial sum to approximate the sum of the series $\sum_{n=1}^{\infty} \frac{(-1)^n n^2}{(n+3)!}$, find the upper bound for the error in the estimate of the sum of the series.