Week in Review Math 152

Week 06

Integration by Partial Fractions
Improper Integrals

A M Integration by Partial Fractions

$\widehat{\mathbf{A}}$ Integration by Partial Fractions

The quotient remainder theorem and general principles of the long division algorithm $x=d Q+R$

- x :dividend $(\in \mathbb{N})$
- d: divisor
- Q :quotient
- $\quad R$: remainder $(x-Q d)$
$\frac{Q}{d) x}$ $\frac{Q d}{x-Q d \leftarrow R}$

The long division algorithm for polynomials quotient remainder by orders

$$
x^{2}=(x+1)(x-1)+1
$$

Application to improper rational function

$x-1$	1
$x + 1 \longdiv { x ^ { 2 } }$	$x + 1 \longdiv { x - 1 }$
$x^{2}+x$	$x+1$
$-x$	-2
$-x-1$	
1	

$$
\begin{aligned}
\frac{x^{2}}{x+1} & =\frac{(x+1)(x-1)+1}{x+1} \\
& =(x+1)+\frac{1}{(x+1)}
\end{aligned}
$$

long division algorithm for polynomials for Tylor expansion
(Repeating long divisions for the quotients)
$(x-1)=(x+1) \cdot 1-2$
$x^{2}=(x+1)(x-1)+1$
$=(x+1)((x+1) \cdot 1-2)+1$
$=(x+1)^{2}-2(x+1)+1$

$\widehat{\mathbf{A}}$ Integration by Partial Fractions

Evaluate $\int_{0}^{1} \frac{4 x^{2}+5}{2 x+1} d x$
(a) $2 \ln 3$
(b) $3 \ln 3$
(c) $4 \ln 3$
(d) $6 \ln 3$
(e) None of these

Long division
$2 x+1 \quad \begin{array}{cc}2 x-1 \\ 4 x^{2}+0 x+5\end{array}$

$4 x^{2}$	$+2 x$	
	$-2 x$	+5
$-2 x$	-1	
	6	

Proper rational function
$\int\left(2 x-1+\frac{6}{2 x+1}\right) d x$
$=\int(2 x-1) d x+\int \frac{6}{2 x+1} d x$

$$
\text { u-sub : } u=2 x+1 ; d x=\frac{1}{2} d u
$$

$=x^{2}-x+3 \ln |2 x+1|+C$
$\int_{0}^{1} \frac{4 x^{2}+5}{(2 x+1)} d x=\left[x^{2}-x+3 \ln |2 x+1|\right]_{0}^{1}=3 \ln 3$

A M Integration by Partial Fractions

Compute $\int_{0}^{4} \frac{x+2}{x^{2}+4} d x$.
(a) $\frac{1}{2}(\ln 20-\ln 4)+\arctan (2)$
(b) $\ln 6-\ln 2$
(c) $\ln 20-\ln 4$
(d) $\frac{1}{2}(\ln 20-\ln 4)+2 \arctan (4)$
(e) $\ln 20-\ln 4+2 \arctan (4)$

$\widehat{\mathbf{A}}$ Integration by Partial Fractions

$\int \frac{x^{3}+x}{x-1} d x=$
(a) $\frac{x^{3}}{3}+\frac{x^{2}}{2}+2 x-2 \ln |x-1|+C$
(b) $\frac{x^{3}}{3}-\frac{x^{2}}{2}+2 x+2 \ln |x-1|+C$
(c) $\frac{x^{3}}{3}+\frac{x^{2}}{2}+2 x+2 \ln |x-1|+C$
(d) $\frac{x^{3}}{3}+\frac{x^{2}}{2}-2 x+2 \ln |x-1|+C$
(e) $\frac{x^{3}}{3}-\frac{x^{2}}{2}+2 x-2 \ln |x-1|+C$

$\widehat{\mathbf{A}}$ Integration by Partial Fractions

Prerequisite : Factor denominators completely

- $\frac{1}{(x+1)\left(x^{2}-2 x-2\right)\left(x^{2}-2 x+2\right)}=\frac{1}{(x+1)(x-3)(x+1)\left(x^{2}-2 x+2\right)}$

Proper factor rule : Break down to proper rational functions

- $\frac{3 x}{\left(x^{2}+2\right)(x-1)}=\frac{A x+B}{x^{2}+2}+\frac{C}{(x-1)}$
- $\frac{1}{(x+a)(x+b)}=\frac{A}{x+a}+\frac{B}{x+b}$

Linear factor rule : $\frac{\boldsymbol{p}(\boldsymbol{x})}{(\boldsymbol{a x}+\boldsymbol{b})^{m}}=\frac{A_{1}}{a x+b}+\frac{A_{2}}{(a x+b)^{2}}+\cdots+\frac{A_{m}}{(a x+b)^{m}} \mathbf{w} / \operatorname{deg}(p(x))<m$
$\frac{x^{2}+4 x+1}{(x+1)^{3}}=\frac{A}{(x+1)}+\frac{B}{(x+1)^{2}}-\frac{C}{(x+1)^{3}}$
$\frac{x^{2}+4 x+1}{(x+1)^{3}}=\frac{(x+1)^{2}+2(x+1)-1}{(x+1)^{3}}=\frac{1}{(x+1)}+\frac{2}{(x+1)^{2}}-\frac{1}{(x+1)^{3}}$

Integration by Partial Fractions

Cover-up method

- $\frac{1}{(x-a)(x-b)}=\left[\frac{1}{(x-a)(x-b)}\right]_{x=b} \cdot \frac{1}{(x-b)}+\left[\frac{1}{(x-a)(x-b)}\right]_{x=a} \cdot \frac{1}{(x-a)}$

Decompose "cover-up" method.
$=\frac{1 /(b-a)}{x-b}+\frac{1 /(a-b)}{x-a}$

Find the partial fraction decomposition of

- $\frac{1}{(x-1)(x-2)}$
- $\frac{1}{(x-1)(x-2)(x-3)}$
- $\frac{1}{(x-1)(x-2)(x-3)(x-4)}$

$\widehat{\mathbf{A}}$ Integration by Partial Fractions

Cover-up method w/ non-factorizable denominator factor
$\frac{3 x}{\left(x^{2}+2\right)(x-1)}=\frac{A x+B}{x^{2}+2}+\frac{C}{(x-1)}$
Step 1: Multiply $(x-1)$ on both sides and let $x=1$

- $\frac{3}{1^{2}+2}=1=C$

Step 2: Pass $(x-1)$ term to the LHS and simplify the LHS

- $\frac{3 x}{\left(x^{2}+2\right)(x-1)}-\frac{1}{(x-1)}=\frac{A x+B}{x^{2}+2}$
- $\frac{3 x-\left(x^{2}+2\right)}{\left(x^{2}+2\right)(x-1)}=\frac{A x+B}{x^{2}+2}$
- $\frac{-(x-1)(x-2)}{\left(x^{2}+2\right)(x-1)}=\frac{A x+B}{x^{2}+2}$
- $\frac{-(x-2)}{\left(x^{2}+2\right)}=\frac{A x+B}{x^{2}+2}$
$A=-1, B=2$
$\frac{3 x}{\left(x^{2}+2\right)(x-1)}=\frac{-x+2}{x^{2}+2}+\frac{1}{(x-1)}$

Integration by Partial Fractions

Which of the following is the form of the partial-fraction decomposition for the rational function?

$$
\frac{1}{(x+1)\left(x^{2}-2 x-3\right)\left(x^{2}-2 x+2\right)}
$$

(a) $\frac{A}{x+1}+\frac{B x+C}{x^{2}-2 x-3}+\frac{D x+E}{x^{2}-2 x+2}$
(b) $\frac{A}{x+1}+\frac{B x+C}{(x+1)^{2}}+\frac{D}{x-3}+\frac{E x+F}{x^{2}-2 x+2}$
(c) $\frac{A}{x+1}+\frac{B}{(x+1)^{2}}+\frac{C}{x-3}+\frac{D}{x^{2}-2 x+2}$
(d) $\frac{A}{x+1}+\frac{B}{(x+1)^{2}}+\frac{C}{x-3}+\frac{D x+E}{x^{2}-2 x+2}$
(e) $\frac{A}{x+1}+\frac{B}{x^{2}-2 x-3}+\frac{C}{x^{2}-2 x+2}$

$\widehat{\mathbf{A}} \mathbf{M}$ Integration by Partial Fractions

Compute the following integral showing all necessary work clearly.

$$
\int \frac{4 x^{2}-5 x+11}{(x+1)(x-1)\left(x^{2}+4\right)} d x
$$

$\widehat{\mathbf{A}} \mathbf{M}$ Integration by Partial Fractions

Find $\int \frac{x+2}{x^{2}\left(x^{2}+1\right)} d x$

$\widehat{\mathbf{A}}$ Integration by Partial Fractions (Exercise)

Write out the form of the partial fraction decomposition of the function

$$
f(x)=\frac{x^{3}-2 x^{2}-5 x+4}{(x+2)^{2}\left(x^{2}-1\right)\left(x^{2}+5 x+7\right)}
$$

(a) $\frac{A}{x+2}+\frac{B}{(x+2)^{2}}+\frac{C}{x-1}+\frac{D}{x+1}+\frac{E x+F}{x^{2}+5 x+7}$
(b) $\frac{A}{x+2}+\frac{B}{(x+2)^{2}}+\frac{C x+D}{x^{2}-1}+\frac{E x+F}{x^{2}+5 x+7}$
(c) $\frac{A}{(x+2)^{2}}+\frac{B}{x-1}+\frac{C}{x+1}+\frac{D x+E}{x^{2}+5 x+7}$
(d) $\frac{A}{(x+2)^{2}}+\frac{B}{x^{2}-1}+\frac{C x+D}{x^{2}+5 x+7}$
(e) $\frac{A x+B}{(x+2)^{2}}+\frac{C x+D}{x^{2}-1}+\frac{E x+F}{x^{2}+5 x+7}$
$\int \frac{3-x}{x^{2}+3 x-4} d x=$
(a) $\frac{-7}{5} \ln |x+4|+\frac{2}{5} \ln |x-1|+C$
(b) $\frac{7}{2} \ln |x+4|+\frac{2}{5} \ln |x-1|+C$
(c) $\frac{1}{5} \ln |x-4|-\frac{4}{5} \ln |x+1|+C$
(d) $\frac{-1}{5} \ln |x-4|+\frac{4}{5} \ln |x+1|+C$
(e) $\frac{2}{5} \ln |x+4|-\frac{7}{5} \ln |x-1|+C$

Integration by Partial Fractions (Exercise)

Which of the following is a proper Partial Fraction Decomposition for $\frac{x+1}{\left(x^{2}-16\right)(x-3)^{2}\left(x^{2}+1\right)}$?
(a) $\frac{x+1}{\left(x^{2}-16\right)(x-3)^{2}\left(x^{2}+1\right)}=\frac{A x+B}{x^{2}-16}+\frac{C}{x-3}+\frac{D}{(x-3)^{2}}+\frac{E x+F}{x^{2}+1}$
(b) $\frac{x+1}{\left(x^{2}-16\right)(x-3)^{2}\left(x^{2}+1\right)}=\frac{A}{x-4}+\frac{B}{x+4}+\frac{C}{x-3}+\frac{D}{(x-3)^{2}}+\frac{E x+F}{x^{2}+1}$
(c) $\frac{x+1}{\left(x^{2}-16\right)(x-3)^{2}\left(x^{2}+1\right)}=\frac{A x+B}{x^{2}-16}+\frac{C x+D}{(x-3)^{2}}+\frac{E x+F}{x^{2}+1}$
(d) $\frac{x+1}{\left(x^{2}-16\right)(x-3)^{2}\left(x^{2}+1\right)}=\frac{A}{x-4}+\frac{B}{x+4}+\frac{C}{x-3}+\frac{D}{(x-3)^{2}}+\frac{E}{x^{2}+1}$
(e) $\frac{x+1}{\left(x^{2}-16\right)(x-3)^{2}\left(x^{2}+1\right)}=\frac{A}{x-4}+\frac{B}{(x-4)^{2}}+\frac{C}{x-3}+\frac{D}{(x-3)^{2}}+\frac{E x+F}{x^{2}+1}$

Which of the following is a proper Partial Fraction
Decomposition for the rational function

$$
\frac{5 x+1}{(x+3)\left(x^{2}+4 x+3\right)\left(x^{2}+4\right)}
$$

(a) $\frac{A}{x+3}+\frac{B}{(x+3)^{2}}+\frac{C}{x+1}+\frac{D x+E}{x^{2}+4}$
(b) $\frac{A}{x+3}+\frac{B x+C}{x^{2}+4 x+3}+\frac{D x+E}{x^{2}+4}$
(c) $\frac{A}{x+3}+\frac{B x+C}{(x+3)^{2}}+\frac{D}{x+1}+\frac{E x+F}{x^{2}+4}$
(d) $\frac{A}{x+3}+\frac{B}{(x+3)^{2}}+\frac{C}{x+1}+\frac{D}{x+2}+\frac{D}{x-2}$
(e) None of these.

$\widehat{\mathbf{M}}$ Integration by Partial Fractions (Exercise)

Compute $\int \frac{2 x^{2}+5 x-5}{(x+1)(x+3)^{2}} d x$
Evaluate $\int \frac{-2 x+4}{\left(x^{2}+1\right)(x-1)} d x$

Find $\int \frac{2 x^{3}-4 x-8}{\left(x^{2}-x\right)\left(x^{2}+4\right)} d x$ showing all necessary work.

AM Improper integrals

Definition: improper integrals

- integrals with infinite intervals of integration
- integrals with intervals with vertical asymptote (infinite discontinuities)

Examples of improper integrals

- Improper integrals with infinite intervals of integration (Type 1):
- $\int_{1}^{\infty} \frac{d x}{x^{2}}, \int_{-\infty}^{0} e^{x} d x, \int_{-\infty}^{\infty} \frac{d x}{1+x^{2}}$
- Improper integrals with infinite discontinuities in the interval (Type 2):
- $\int_{-3}^{3} \frac{d x}{x^{2}}, \int_{1}^{2} \frac{d x}{x-1}, \int_{0}^{\pi} \tan x d x$
- Improper integrals with infinite discontinuities and infinite intervals of integration (Type 3):
- $\int_{0}^{\infty} \frac{d x}{\sqrt{x}} \int_{-\infty}^{\infty} \frac{d x}{x^{2}-9^{\prime}} \int_{1}^{\infty} \sec x d x$
- Limit = tool to handle infinity

$\widehat{\mathbf{A}}$ Improper integrals

Definition: improper integral of f over the interval $[a, \infty]$

$$
\int_{a}^{\infty} f(x) d x=\lim _{b \rightarrow \infty} \int_{a}^{b} f(x) d x
$$

Definition: improper integral of f over the interval $[-\infty, b]$

$$
\int_{-\infty}^{b} f(x) d x=\lim _{a \rightarrow-\infty} \int_{a}^{b} f(x) d x
$$

Definition: improper integral of f over the interval $[-\infty, \infty$]

$$
\int_{-\infty}^{\infty} f(x) d x=\int_{a}^{\infty} f(x) d x+\int_{-\infty}^{a} f(x) d x
$$

- In the case where the limit exists, the improper integral is said to converge, and the limit is defined to be the value of the integral.
- In the case where the limit does not exist, the improper integral is said to diverge, and it is not assigned a value.

$\widehat{\mathbf{A}}$ Improper integrals

Theorem: improper integral of $1 / x^{p}$ over the interval $[1, \infty)$

$$
\int_{1}^{\infty} \frac{1}{x^{p}} d x=\left\{\begin{array}{l}
\frac{1}{p-1} \quad \text { if } p>1 \\
\text { diverges if } p \leq 1
\end{array}\right.
$$

Which of the following statements is true regarding the improper integral $\int_{1}^{\infty} \frac{\sin x+2}{x(x+1)} d x$?
(a) The integral converges because $\int_{1}^{\infty} \frac{\sin x+2}{x(x+1)} d x \leq \int_{1}^{\infty} \frac{3}{x^{2}} d x$, which converges.
(b) The integral converges because $\int_{1}^{\infty} \frac{\sin x+2}{x(x+1)} d x \leq \int_{1}^{\infty} \frac{1}{x^{2}} d x$, which converges.
(c) The integral diverges because $\int_{1}^{\infty} \frac{\sin x+2}{x(x+1)} d x \geq \int_{1}^{\infty} \frac{3}{x} d x$, which diverges.
(d) The integral diverges because $\int_{1}^{\infty} \frac{\sin x+2}{x(x+1)} d x \geq \int_{1}^{\infty} \frac{1}{x} d x$, which diverges.
(e) The integral diverges by oscillation.

On ($0, \infty$)
$(\sin x+2) \leq 3$
$x^{2}+x>x^{2} \Rightarrow \frac{1}{x^{2}+x}<\frac{1}{x^{2}}$
$\frac{(\sin x+2)}{x^{2}+x} \leq \frac{3}{x^{2}}$ where $\int \frac{3}{x^{2}} d x \leq \infty$

$\widehat{\mathbf{A}}$ Improper integrals

Theorem: improper integral of $1 / x^{p}$ over the interval $(0,1]$

$$
\int_{1}^{\infty} \frac{1}{x^{p}} d x=\left\{\begin{array}{l}
\frac{1}{1-p} \quad \text { if } p<1 \\
\text { diverges } \text { if } p \geq 1
\end{array}\right.
$$

Which statement is true about
the integral $\int_{0}^{4} \frac{2}{(x-3)^{2}} d x$?
(a) Diverges
(b) Converges to $\frac{8}{3}$
(c) Converges to $\frac{4}{3}$
(d) Converges to $-\frac{8}{3}$
(e) Converges to $-\frac{4}{3}$

$\widehat{\mathbf{M}}$ Improper integrals

Which of the following statements is true regarding the improper integral $\int_{1}^{\infty} \frac{\sin x+2}{x(x+1)} d x$?
(a) The integral converges because $\int_{1}^{\infty} \frac{\sin x+2}{x(x+1)} d x \leq \int_{1}^{\infty} \frac{3}{x^{2}} d x$, which converges.
(b) The integral converges because $\int_{1}^{\infty} \frac{\sin x+2}{x(x+1)} d x \leq \int_{1}^{\infty} \frac{1}{x^{2}} d x$, which converges.
(c) The integral diverges because $\int_{1}^{\infty} \frac{\sin x+2}{x(x+1)} d x \geq \int_{1}^{\infty} \frac{3}{x} d x$, which diverges.
(d) The integral diverges because $\int_{1}^{\infty} \frac{\sin x+2}{x(x+1)} d x \geq \int_{1}^{\infty} \frac{1}{x} d x$, which diverges.
(e) The integral diverges by oscillation.

$\widehat{\mathbf{A}}$ Improper integrals

$\int_{1}^{\infty} x e^{-x^{2}} d x=$
(a) 1
(b) $2 e$
(c) $\frac{1}{2 e}$
(d) $\frac{1}{2}$
(e) ∞
$\widehat{\mathbf{A}} \sqrt{\mathbf{M}}$ Improper integrals
$\int_{0}^{1} \frac{2}{x^{2}-1} d x=$
(a) $-\infty$
(b) ∞
(c) $\ln 2$
(d) $-\ln 2$
(e) 0

$\overline{\mathbf{A}}$ Improper integrals (Exercise)

Compute $\int_{-1}^{\infty} \frac{1}{1+x^{2}} d x$.
(a) ∞
(b) $\frac{\pi}{2}$
(c) $\frac{\pi}{4}$
(d) None of these.
(e) $\frac{3 \pi}{4}$

The improper integral $\int_{1}^{e} \frac{1}{x \ln x} d x$
(a) diverges to $-\infty$.
(b) converges to 1 .
(c) diverges to ∞.
(d) converges to -1 .
(e) converges to $\frac{1}{e}-1$.

$\widehat{\mathbf{M}}$ Improper integrals (Exercise)

Which of the following statements is true regarding the improper integral $\int_{1}^{\infty} \frac{1}{e^{x}+\sqrt{x}} d x$?
(a) The integral converges because $\int_{1}^{\infty} \frac{1}{e^{x}+\sqrt{x}} d x<\int_{1}^{\infty} \frac{1}{\sqrt{x}} d x$ and $\int_{1}^{\infty} \frac{1}{\sqrt{x}} d x$ converges.
(b) The integral diverges because $\int_{1}^{\infty} \frac{1}{e^{x}+\sqrt{x}} d x>\int_{1}^{\infty} \frac{1}{e^{x}} d x$ and $\int_{1}^{\infty} \frac{1}{e^{x}} d x$ diverges.
(c) The integral diverges because $\int_{1}^{\infty} \frac{1}{e^{x}+\sqrt{x}} d x>\int_{1}^{\infty} \frac{1}{\sqrt{x}} d x$ and $\int_{1}^{\infty} \frac{1}{\sqrt{x}} d x$ diverges.
(d) The integral converges because $\int_{1}^{\infty} \frac{1}{e^{x}+\sqrt{x}} d x<\int_{1}^{\infty} \frac{1}{e^{x}} d x$ and $\int_{1}^{\infty} \frac{1}{e^{x}} d x$ converges.
(e) The integral converges to 0 .

Evaluate $\int_{1}^{\infty} \frac{e^{2 / x}}{x^{2}} d x$
(a) $-\frac{1}{2}\left(1-e^{2}\right)$
(b) $2\left(1-e^{2}\right)$
(c) $-2\left(1-e^{2}\right)$
(d) $\frac{1}{2}\left(1-e^{2}\right)$
(e) $\frac{1}{2} e^{2}$

$\widehat{\mathbf{A}}$ Improper integrals (Exercise)

The integral $\int_{0}^{\infty} e^{-2 x} d x$
(a) diverges
(b) converges to 0
(c) converges to $\frac{1}{4}$
(d) converges to $\frac{1}{2}$
(e) converges to 2

Which of the following integrals are improper?
$\begin{array}{ll}\text { (I) } \int_{0}^{1} \frac{1}{3 x-1} d x & \text { (II) } \int_{1}^{3} \ln (x-1) d x \\ \text { (III) } \int_{-\infty}^{1} \frac{1}{x^{4}} d x\end{array}$
(a) (III) only
(b) (I) and (III) only
(c) (II) and (III) only
(d) (I) and (II) only
(e) All of them are improper.

$\widehat{\mathbf{A}}$ Improper integrals (Exercise)

Which statement is true about the integral $\int_{1}^{\infty} \frac{3 \sin ^{2} x}{x^{2}} d x$?
(a) The integral converges by comparison to $\int_{1}^{\infty} \frac{1}{x} d x$
(b) The integral diverges by comparison to $\int_{1}^{\infty} \frac{3}{x^{2}} d x$
(c) The integral converges by comparison to $\int_{1}^{\infty} \frac{3}{x^{2}} d x$
(d) The integral diverges by comparison to $\int_{1}^{\infty} \frac{1}{x} d x$
(e) None of these

Which of the following statements is true regarding the improper integral $\int_{1}^{\infty} \frac{\cos ^{2} x+5}{x^{4}} d x$?
(a) It converges since $\int_{1}^{\infty} \frac{\cos ^{2} x+5}{x^{4}} d x \leq \int_{1}^{\infty} \frac{5}{x^{4}} d x$, which converges.
(b) It converges since $\int_{1}^{\infty} \frac{\cos ^{2} x+5}{x^{4}} d x \leq \int_{1}^{\infty} \frac{1}{x^{4}} d x$, which converges.
(c) It converges since $\int_{1}^{\infty} \frac{\cos ^{2} x+5}{x^{4}} d x \leq \int_{1}^{\infty} \frac{6}{x^{4}} d x$, which converges.
(d) It converges to zero.
(e) It diverges by oscillation.

