

1.2: SOLUTIONS TO DIFFERENTIAL EQUATIONS

Review

• A **solution to a differential equation** is

• An **initial value problem** is

a differential equation plus an initial condition.

• A **solution to an initial value problem** is

Exercise 1

Is e^{2x} a solution to the differential equation $y'' - 4y' + 4y = 0$?

$$
P(\mu_{g} \text{ in } y(x) = e^{2x};
$$
\n
$$
y'' - 4y' + 4y = 0
$$
\n
$$
y'(x) = 2e^{2x}
$$
\n
$$
y''(x) = 4e^{2x}
$$
\n
$$
y''
$$

Exercise 2

Is $cos(x)$ a solution to the differential equation $f^{(4)}(x) - f''(x) = 4 cos(x)$?

$$
f(x) = cos(x)
$$

\n
$$
f^{(4)} - f^{(4)} = 4cos(x)
$$

\n
$$
f^{(4)} = -cos(x)
$$

\n
$$
f^{(4)} = -cos(x)
$$

\n
$$
f^{(4)} = 2cos(x)
$$

\n
$$
f^{(4)} = 2cos(x)
$$

\n
$$
f^{(4)} = cos(x)
$$

Is $sin(2t)$ a solution to the following initial value problem?

$$
\frac{d^{2}g}{dt^{2}} - \frac{dg}{dt} + 4g = -2\cos(2t), \quad g(0) = 1.
$$
\n
\n
$$
g'(t) = 5\ln(2t)
$$
\n
$$
g'(t) = 2\cos(2t)
$$
\n
$$
-4\sin(2t) - 2\cos(2t) + 4(\sin(2t)) = -2\cos(2t),
$$
\n
$$
g'(t) = -4\sin(2t)
$$
\n
$$
5\sin(2t) - 5\sin(2t) - 2\sin(2t) = -\frac{1}{2}\cos(2t),
$$
\n
$$
5\sin(2t) - 2\sin(2t) - 2\sin(2t) = -\frac{1}{2}\cos(2t),
$$
\n
$$
5\sin(2t) - 2\sin(2t) - 2\sin(2t) - 2\sin(2t),
$$
\n
$$
g'(0) = 5\sin(2t) - 2\cos(2t) - 2\sin(2t),
$$
\n
$$
g'(0) = 5\sin(2t) - 2\cos(2t) - 2\sin(2t),
$$
\n
$$
g'(0) = 5\sin(2t) - 2\cos(2t) - 2\cos(2t),
$$
\n
$$
g'(0) = -\frac{1}{2}\cos(2t) - \frac{1}{2}\cos(2t),
$$
\n
$$
g'(0) = -\frac{1}{2}\cos(2t) - \frac{1}{2}\cos(2t),
$$
\n
$$
g'(0) = 1.
$$

Exercise 4

Find the values of a for which e^{at} is a solution to $y'' - 3y' + y = 0$.

$$
y = e^{at}
$$

\n
$$
y' = ae^{at}
$$

\n
$$
a^{2}e^{at} - 3ae^{at} + e^{at} = 0
$$

\n
$$
a^{2} - 3a + 1 = 0
$$

\n
$$
a^{2} - 3a + 1 = 0
$$

\n
$$
a = \frac{-(-3) \pm \sqrt{9 - 4(x)}}{2} = \frac{3 \pm \sqrt{6}}{2}
$$

Find the values of b such that $sin(bx)$ solves the differential equation $y + 6y'' = 0$.

1.3: CLASSIFICATION OF DIFFERENTIAL EQUATIONS

Review

- An **ordinary differential equation** (ODE) is a differential equation that has derivatives with respect to just one variable.
- A **partial differential equation** (PDE) is a differential equation that has derivatives with respect to

more than one variable.

• The **order** of a differential equation is
the order of the highest devivative.

• An ODE is **linear** if it can be written in the form

$$
a_n(x) y^{(n)}(x) + a_{n-1}(x) y^{(n-1)}(x) + \cdots + a_1(x) y'(x) + a_0(x) y(x) = g(x).
$$

i.e., in a **linear** ODE,

- **–** y and its derivatives are all in separate terms.
- **–** y and its derivatives are not inside any functions or to any powers.
- **–** Each term can be multiplied by a function of x.
- $-$ There can also be another function of x by itself.

For each of the following, determine whether it is an ODE or a PDE. Additionally, state the order of the differential equation.

(a)
$$
\frac{\partial f}{\partial x} + \frac{\partial f}{\partial y} = f
$$

\n $h\alpha s \times a\alpha t \quad y \quad devivatives \Rightarrow PDE$ 1st *order*
\n(b) $\frac{d^2g}{dx^2} - 2\left(\frac{dg}{dx}\right)^5 = xg$
\n $only \times derivatives \Rightarrow ODE$ 2nd *order*
\n(c) $r'''(z)r'(z) - z^2 + \tan(z)r(z) = 0$
\n $only \neq derivatives \Rightarrow ODE$ 3nd *order*
\n(d) $u_{xx} + u_{yy}u = 0$
\n $x \quad and \quad y \quad devivatives \Rightarrow PDE$ 2nd *order*

Exercise 7

For each of the following ODEs, determine if it is linear or nonlinear.

(a)
$$
w' - w''w + t^2w = 7t
$$

\n**h** $\omega \iota / i \omega \iota \iota \omega$
\n(b) $\frac{1}{g'(t)} + g(t) = g''(t)$

(c)
$$
(x^2 + \cos(x))Q(x) - \tan(x)Q'(x) = Q'''(x)
$$

(d)
$$
y^{(5)} - x^3y^2 + y''' = 7x^3 - \csc(x)
$$

nonlinear

(e) $t^2 + z^{(6)} + \cos(t)z''' = \cos(t)$

lincar

1.1: DIRECTION FIELDS

Review

• A direction field (or slope field) plots the slope of the solution to an ODE at a bunch of different points.

Exercise 8

Sketch the slope field of for the differential equation $y' = y^2 - 2y$. Draw some example solutions to the ODE. If the initial condition is $y(0) = a$, how does the long-time behavior of $y(t)$ depend on a?

Sketch the slope field of for the differential equation $y'=\frac{1}{4}y(y+3)^2$. Draw some example solutions to the ODE. If the initial condition is $y(0) = a$, how does the long-time behavior of $y(t)$ depend on a?

2.2: SEPARABLE ODES – SEPARATION OF VARIABLES

Review

• A **separable** ODE is an ODE that has the form

$$
\frac{\mathrm{d}y}{\mathrm{d}x} = f(x)g(y).
$$

• Steps for solving a separable ODE:

1. Treat $\frac{\mathrm{d}y}{\mathrm{d}x}$ as a fraction.

- 2. Move all the y' s to one side and all the x' s to the other.
- 3. Integrate both sides.
- 4. (If possible) solve for y .
- The **general solution** to a differential equation is the form of the solution that contains all possible solutions inside it. It is the solution you get *before* you plug in the initial condition to solve for c.
- The solution to an initial value problem is **defined** on an *interval* that contains the initial condition. On that interval, the solution must be
	- **–** a **function** that is
	- **defined** and
	- **differentiable**.

Exercise 10

Solve the differential equation $f'=\frac{x^3+1}{f^2}$.

$$
\frac{df}{dx} = \frac{x^{3}+1}{f^{2}}
$$
\n
$$
\int f^{2}df = \int (x^{3}+1)dx
$$
\n
$$
\frac{1}{3}f^{3} = \frac{1}{4}x^{4}+x+c
$$
\n
$$
f(x) = \left(\frac{3}{4}x^{4}+3x+c\right)^{1/3} \int f_{\text{dis}} \text{ is a solution for}
$$

Solve the initial value problem

$$
f' = e^{-f}(4 - 2x), \qquad f(2) = 0.
$$

Where is the solution defined?

$$
\frac{df}{dx} = e^{-f}(4-2x)
$$
\n
$$
\int e^{f} df = \int (4-2x) dx
$$
\n
$$
e^{f} = 4x - x^{2} + c
$$
\n
$$
f(x) = \int u(4x - x^{2} + c) \iff general solution
$$
\n
$$
u_{5}e \pm c \text{ to solve for } c:
$$
\n
$$
f(2) = \int u(4(2) - (2)^{2} + c) = 0
$$
\n
$$
\int u(4+c) = 0
$$
\n
$$
4 + c = e^{2} = 1
$$
\n
$$
c = -3
$$
\n
$$
\int f(x) = \int u(4x - x^{2} - 3)
$$

Where is the solution defined?

$$
-x^{2}+4x-3>0
$$

$$
x^{2}-4x+3<0
$$

$$
(x-1)(x-3)<0
$$

$$
x^{2}-2
$$

$$
x^{2}-4x+3<0
$$

$$
x^{2}-4x+3<0
$$

Solve the initial value problem

 $(e^y - y)x²y' = 1,$ $y(1) = 2.$

$$
(e9-y) \times \frac{2}{dx} = 1
$$

\n
$$
\int (e9-y) dy = \int x^{-2} dx
$$

\n
$$
e9 - \frac{1}{2}y2 = -x-1 + C \leftarrow
$$
 general solution in implicit
\n
$$
f_{\text{form.}} We leave it in implicit
$$

\n
$$
f_{\text{form.}} = \frac{1}{2}e^{2x} + \frac{1}{2}e^{2x} = -e^{2x} + C
$$

\n
$$
e2 - \frac{1}{2}(2)^{2} = -e^{2x} + C
$$

\n
$$
c = e2 - 1
$$

\n
$$
c = e2 - 1
$$

$$
e^{\frac{y}{2}-\frac{1}{2}}y^{2}=-x^{-1}+e^{2}-1
$$

- (a) Find the general solution to the differential equation $y' + y^2 \sin(x) = 0$.
- (b) Find the solution that satisfies the initial condition $y(\pi) = 3$. Where is the solution defined?
- (c) Find the solution that satisfies the initial condition $y(\pi) = 0$. Where is the solution defined?

a)
$$
\frac{dy}{dx} = -y^2 \sin(x)
$$

\n
$$
\int y^{-2} dy = -\int 5x(x) dx (y \neq 0)
$$

\n
$$
-y^{-1} = cos(x) + C
$$

\n
$$
y^{-1} = C - cos(x)
$$

\n
$$
y^{-1} = C - cos(x)
$$

\n
$$
y(x) = \frac{1}{C - cos(x)}
$$

\n
$$
y(x) = \frac{1}{C + 1} = \frac{1}{2} \Rightarrow C + 1 = 2 \Rightarrow c =
$$

\n
$$
y(x) = \frac{1}{1 - cos(x)}
$$

\n
$$
y(x) = \frac{1}{1 - cos(x)}
$$

\n
$$
y(x) = \frac{1}{C + 1} = \frac{1}{2} \Rightarrow C + 1 = 2 \Rightarrow c =
$$

\n
$$
y(x) = \frac{1}{1 - cos(x)}
$$

\n
$$
y(x) = \frac{1}{C + 1} \Rightarrow y = 1
$$

\n
$$
y(x) = \frac{1}{1 - cos(x)}
$$

\n
$$
y(x) = \frac{1}{C + 1} \Rightarrow y = 1
$$

\n
$$
y(x) = \frac{1}{C + 1} \Rightarrow y = 1
$$

\n
$$
y(x) = \frac{1}{C + 1} \Rightarrow y = 1
$$

\n
$$
y(x) = \frac{1}{C - cos(x)}
$$

\n
$$
y = 0
$$

\n
$$
y =
$$

Page 11 of 15

Solve the differential equation $\frac{\mathrm{d}g}{\mathrm{d}t} = (g^2 - 9) \cos(t)$.

$$
\int \frac{1}{g^2-9} \mathcal{L} g = \int \cos(\theta) d\theta \quad (g^2 \neq 9)
$$

$$
\frac{1}{j^{2} - 9} = \frac{1}{(g - 3)(g + 3)} = \frac{A}{g - 3} + \frac{B}{g + 3}
$$

$$
1 = A(g + 3) + B(g - 3)
$$

$$
g = 3: 1 = 6A \Rightarrow A = \frac{1}{6}
$$

$$
g = -3: 1 = -6B \Rightarrow B = -\frac{1}{6}
$$

Case
$$
g = 3
$$

\n $9(x) = 3$, $g'(x) = 0$

\nplug into $diff$ eg :

\n $0 = (3^2 - 9) cos(x) = 0$

\n $g(x) = 3$ is a solution.

Case
$$
g = -3
$$
:
\n $g(x) = -3$, $g'(x) = 0$
\n $gluy$ into *d*:ff eq:
\n $0 = ((-3)^2 - 9)cos(x) = 0$
\n $g'(x) = -3$ is a solution.

$$
\int \left(\frac{1/6}{9^{-3}} - \frac{1/6}{9+3}\right) dy = \sin (4) + c
$$
\n
$$
\int \left(\frac{1}{6} \ln |q-3| - \frac{1}{6} \ln |q+3| \right) = 5 \ln (4) + c
$$
\n
$$
\int \frac{1}{\ln |q-3|} = 5 \ln (4) + c
$$
\n
$$
\int \frac{1}{\ln |q|} = 3 \ln (4) + c
$$
\n
$$
\int \frac{1}{\ln |q|} = 3 \ln (4) + c
$$
\n
$$
\int \frac{1}{\ln |q|} = 3 \ln (4) + c
$$
\n
$$
\int \frac{1}{\ln |q|} = 3 \ln (4) + c
$$
\n
$$
\int \frac{1}{\ln |q|} = 3 \ln (4) + c
$$
\n
$$
\int \frac{1}{\ln |q|} = \ln |q| + c
$$
\n
$$
\int \frac{1}{\ln |q|} = \ln |q| + c
$$
\n
$$
\int \frac{1}{\ln |q|} = \ln |q| + c
$$
\n
$$
\int \frac{1}{\ln |q|} = \ln |q| + c
$$
\n
$$
\int \frac{1}{\ln |q|} = \ln |q| + c
$$

2.1: LINEAR ODES – METHOD OF INTEGRATING FACTORS

Review

Whenever you have a **linear equation**, you can always solve it using the **method of integrating factors**.

Steps for the **method of integrating factors**:

- 1. Put in standard form: $y' + p(t)y = g(t)$.
- 2. Multiply by μ .
- 3. Find μ to match the product rule.
- 4. Reverse the product rule.
- 5. Integrate both sides and solve for y .

Exercise 15

Determine if each of the following are separable or linear.

(a)
$$
u'(t) = \frac{\sin(t)}{\cos(u)}
$$

\n $5epavalle$
\n(b) $\frac{dw}{dr} = \sin(wr)$
\n**n** *e i* **there**
\n(c) $xz^2 \frac{dz}{dx} = 1 \implies \frac{dz}{dx} = \frac{1}{xz^2}$
\n $5epavalle$
\n(d) $y' = 3y + 4$
\n $5epavalle$ *and linear*
\n(e) $\frac{dg}{dt} = 4g - 3t$
\n $2\sin(2x)$
\n(f) $t^2y - y' = 2 = 0$
\n $2 \sin(2x)$
\n(g) $f' = 1 + t + f + tf = 1 + t + (1 + t) + 1 = (1 + t) (1 + t)$
\n $5epavalle$ *and linear*

Solve the differential equation $y' = 3y + 4$. (Note that this could also be solved using separation of variables.)

Pat in standard form. $y' - 3y = 4$ 2. Multiply by M. $\mu y' - 3 \mu y = 4 \mu$ $rac{d\mu}{dt}$ $3. Find u.$ $\frac{d_{\mu}}{dt}$ = -3 μ \Rightarrow μ (t) = e^{-3t} 4. Reverse product vule. $\frac{d}{dt}\left(e^{-3t}y\right) = 4e^{-3t}$ 5. Integrate and solve for y. e^{-3t} $y = -\frac{y}{3}e^{-3t}$ + c $y(t) = -\frac{y}{3} + ce^{3t}$

Solve the initial value problem

 $tf' - (1 + t)f = 2t^2$, $f(0) = 2$.

1. Put in standard form.

$$
f' - (\frac{1}{t} + 1) f = 2t
$$

2. Multiply by
$$
\mu
$$
.
\n
$$
\mu(t) f' - (\frac{1}{t} + 1)\mu(t) f' = 2t \mu(t)
$$
\n
$$
\frac{d\mu}{dt}
$$

 $3. Find μ (4).$

$$
\frac{d\mu}{dt} = -(\frac{1}{t} + 1)\mu
$$
\n
$$
\int \frac{d\mu}{\mu} = -\int (\frac{1}{t} + 1) dt
$$
\n
$$
\ln|\mu| = -\ln|t| - t + c
$$
\n
$$
\mu(t) = ce^{-\ln|t| - t} = ce^{\ln|\frac{t}{t}|}e^{-t} = c/\frac{1}{t}e^{-t} = c^{\frac{1}{t}}e^{-t}
$$

4. Revense the product rule.

$$
\frac{d}{dt}\left(\frac{e^{-t}}{t}f(t)\right)=2t\frac{e^{-t}}{t}=2e^{-t}
$$

5. Integrate both sides and solve for 4.
\n
$$
\frac{e^{-t}}{t} f(t) = -2e^{-t} + c
$$
\n
$$
f(t) = -2t + cte^{t}
$$
\n6. Use TC to solve for c.
\n
$$
2 = -2(1) + c(1)e^{t}
$$

 $4 = ec$ \Rightarrow $c = \frac{4}{e}$ $\sqrt{f(t)} = -2t + \frac{4}{e}te^{t}$