1 Week 15 HOGU: 6.2, Final Exam Review Part 2

Problem 1. The John Weeks Enterprise is booming! The business needs to save up \$150,000 for a planned expansion. They make an initial deposit of \$25,000 and plan on depositing \$500 at the end of each month in T-bills, which currently yield 5.16% APR. Say that interest in these T-bills is compounded monthly. How many years will it take the John Weeks Enterprise to save up the \$150,000 they need?

Problem 2. You are building the boat "Sailing for Weeks", which will currently cost \$44,750 to craft. You make a down payment of \$10,000 and finance the rest with a 10-year loan. The loan charges 7% interest, compounded quarterly.

(a) After making quarterly payments on the boat for 3 years, how much of the principal of your loan is still unpaid? made 3 wes

N = 10.4 = 40	N = 3 - 4 = 12 of payments	N=7.4=28
I. T	I = 7	I = 7
٤٨ <u>- مەمە</u> - 1000 - 34150	Pv= 34750	PV= Solve - 26720.31
PMT = SOLVE → 1215,28	PMT = -1215.28	PMT = - 1215.28
FV= 0	FV= SOLVe -> 26720	. 31 FV = O
P/Y = 4	P/Y = 4	P/Y = 4
c/Y= 4	c/r= 4	c/r= 4
PMT: END	PMT: END	PMT: END
Find Payment First	2) Solve problem using # payments made	using payments left

PV=26720.31

(b) After 3 years on your old loan above, you find a loan company that will refinance your loan at an APR of 5%, compounded quarterly, with a payment schedule that has you paying off the loan in 5 years! You decide to refinance your purchase and to make quarterly payments on the new loan. How much will your quarterly payments be?

N = 5.4 = 20
I = 5
PV = 26720.31
PMT = SOLVE
$$\rightarrow$$
-1518.26
FV = 0
P/Y = 4
 $c/Y = 4$

Problem 3. Using union, intersection, and complements, how would you describe the shaded-in regions of these Venn diagram? (There is more than one correct answer.)

Problem 5. Given that F and G are two events of an experiment with P(F) = 0.4, P(G) = 0.5, and $P(F \cap G) = 0.2$, calculate the following probabilities:

(c) $P(F \cup G^C)$ (You may find the Venn diagram below helpful!)

Problem 6. A local group is sponsoring a game at the Renaissance Fair! A foolish jester asks you to pay \$1 to play the game, then flips a fair two-sided coin. As it is in the air, the player calls "heads" or "tails". If the coin lands on the side the player called out, they win \$5! Otherwise, the player wins nothing.

(a) Let X be the amount of *net winnings*, in dollars, that a player makes from playing this game. Write a probability distribution for X.

$$\frac{\chi - 1 + 5 = 4}{P(x)} = \frac{-1 + 0 = -1}{.5}$$

(b) What is the expected amount of net winnings for the player? Is this a fair game?

$$E(x) = 4(.5) + (-1)(.5) = 1.5$$

The player is expected to win *1.50. This is not
a fair game because $E(x) \neq 0$.

Problem 7. Compute the domain of the following functions. Then state all holes and vertical asymptotes of the function. (Remember that, for holes, you must give an x- and y-coordinate. Write your answer as (x, y).)

(a)
$$f(x) = \frac{(x+3)^2}{(x-1)^2(x+3)}$$
 Rational Function => denomination
Can not be zero for
domain
Domain: $(-\infty, -3) \cup (-3, 1) \cup (1, \infty)$
hole at $x = -3 => (-3, 0)$
 $T(x+3)$ divided out completely
trom denominator
Vertical asymptote: $x = 1$
 $f(x) \approx \frac{x+3}{x-1}$
 $f(x) \approx \frac{x+3}{x-1}$

(b)
$$f(x) = \frac{(x+3)}{(x-1)^2(x+3)^2} \approx \frac{1}{(x-1)^2(x+3)}$$

Domain: $(-\infty, -3) \cup (-3, 1) \cup (1,\infty)$
holes: none
Vertical Asymptotes: $x = 1, -3$

Problem 8. Find the domain of the following function:

$$f(x) = \begin{cases} \ln(-x) & \text{if } x \leq 2\\ \sqrt{4-x} & \text{if } x > 3 \end{cases}$$

$$ln(-x) = -x > 0$$

 $x < 0 \leftarrow only x values strictly$
Less than zero can be
in domain.

$$\sqrt{4-x} = 3 \quad 4-x \ge 0 -x \ge -4 x \le 4 \longleftarrow x - values less than or equal to 24.$$

Problem 9. Solve the equation $e^{4x} = 5e^{7x}$ for x.

$$e^{4x} = 5e^{7x}$$

$$e^{4x} = 5e^{150akx} by$$

$$e^{7x} = 5 dividing by e^{7x}$$

$$x = -\frac{\ln 5}{3}$$

$$e^{1x-7x} = 5 use laws$$

$$e^{-3x} = 5 of exponents$$

$$e^{-3x} = 5 simplify$$

$$\ln e^{-3x} = \ln 5 take \ln ob both sides$$

$$-3x = \ln 5 divide by -3$$

Problem 10. Write the expression $\frac{1}{3}\ln(x) - \ln(x+y) + 4\ln(2z)$ as a single logarithm. Assume all variables represent positive numbers.

$$\frac{1}{3} l_{n}(x) - l_{n}(x+y) + 4 l_{n}(zz)$$
exponents
$$= l_{n} x^{3} - l_{n}(x+y) + l_{n}(zz)$$

$$= l_{n}\left(\frac{x^{3}}{x+y}\right) + l_{n}(zz)^{4}$$

$$= l_{n}\left(\frac{x^{3}}{x+y}\cdot\frac{z^{4}}{z}\right)$$

$$= l_{n}\left(\frac{10x^{3}x^{4}}{x+y}\cdot\frac{z^{4}}{z}\right)$$