

Math 150 - Week-In-Review 12 Sana Kazemi

FINAL EXAM REVIEW

1. Determine whether the Law of Sines or the Law of Cosines is needed to solve the triangle, then (if possible), solve the triangle.

$$\angle B = 17^{\circ}$$
, $\angle C = 150^{\circ}$ and $c = 65$.

2. Determine whether the Law of Sines or Law of Cosines is needed to solve the triangle, then (if possible), solve the triangle.

$$\angle A = 32^{\circ}, \ a = 4.2, \ b = 12.4$$

3. Determine whether the Law of Sines or Law of Cosines is needed to solve the triangle, then (if possible), solve the triangle.

$$a = 10, b = 12, c = 16$$

4. Determine whether the Law of Sines or Law of Cosines is needed to solve the triangle, then (if possible), solve the triangle.

$$a = 13, b = 15, \angle A = 53^{\circ}$$

5. Find the component form, magnitude and directional angle of $\overrightarrow{v} = -\overrightarrow{u} - \sqrt{3}\overrightarrow{w}$, where $\overrightarrow{u} = 8\overrightarrow{i} + \sqrt{3}\overrightarrow{j}$, and $\overrightarrow{w} = -\frac{2}{\sqrt{3}}\overrightarrow{i} + \overrightarrow{j}$.

6. Find the component form of \overrightarrow{v} given its magnitude and the angle it makes with the positive x-axis.

$$\|\overrightarrow{v}\| = 3, \ \theta = 225^{\circ}$$

7. Find $\overrightarrow{u} \bullet \overrightarrow{v}$ and $(\overrightarrow{u} \bullet \overrightarrow{v})\overrightarrow{v}$ for $\overrightarrow{u} = \langle 2, 4 \rangle$ and $\overrightarrow{v} = \langle -6, 2 \rangle$.

8. Find the angle between \overrightarrow{u} and \overrightarrow{v} for $\overrightarrow{u} = \langle 2, 4 \rangle$ and $\overrightarrow{v} = \langle -6, 2 \rangle$.

9. Compute the difference quotient for $f(x) = \frac{-x}{2x+1}$.

10. Solve the following.

(a)
$$|9 + 2x| = 5x - 3$$

(b)
$$\frac{x^2 + x - 6}{2x^2 - 6x - 8} < 0$$

11. Write the equation of the line perpendicular to 3x - 4y = 8 and having the same y-intercept as y = 5x - 1.

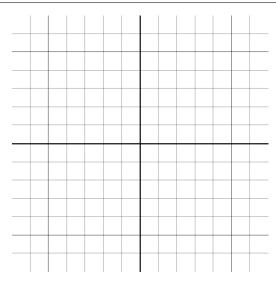
12. Given the equation $g(x) = -2x^2 + 4x + 9$, Identify the vertex, axis of symmetry, write the equation in vertex form and find the x-intercepts.

13. Consider the function $g(x) = -(2x-4)^3 + 5$. Describe the transformations from $f(x) = x^3$ to g(x).

14. Find domain of the function $f(x) = e^{\frac{x^2-4}{\sqrt{3x-1}}}$

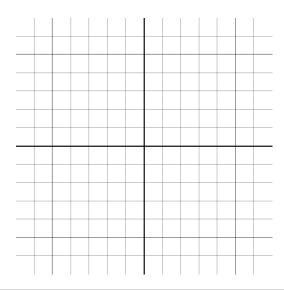
15. Solve the following equation $\log_6(x-12)-\log_6(x)=\log_6(x-6)$.

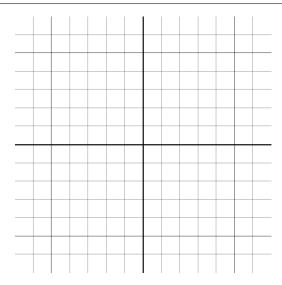
16. Solve the equation $7^{2x+5} = 4^{1-x}$.

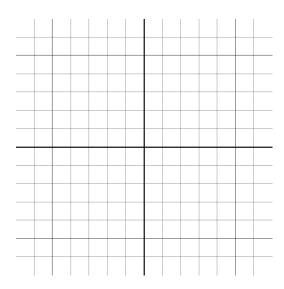

17. Expand the logarithmic expression $\log_8 \left(\frac{(x^2+1)^4}{64(x^3-x)} \right)$

18. Determine the quotient and remainder of the $(14x^3 - 2x^2 - \frac{1}{2}) \div (2x + 1)$.

19. Determine the domain, vertical asymptote(s), horizontal asymptote(s), hole(s) and intercepts of the equation $g(x) = \frac{8x^2 - 12x + 4}{(x - 1)(x + 3)}$. State the end behavior, then sketch the graph.




20. Given $f(x) = \frac{2x}{x+3}$, $g(x) = \frac{1}{x}$, find $(f \circ g)(x)$ its domains.



21. Given three equations $f(x) = \sqrt{5-x} + 1$, $g(x) = e^{3x} - 1$ and $h(x) = \log_3(x+2)$. Find domain of the function $S(x) = \frac{f(x) + g(x)}{h(x)}$. Then sketch f, g and h separately.

22. Solve the following system of equations. $\begin{cases} x^2 - y^2 = -4 \\ 2\sqrt{x} - y = 0 \end{cases}$

23. Simplify the expression $\frac{4\sin(x)\cos(x)}{2\cos(x)\cos(2x) - 2\sin(x)\sin(2x)}$.

24. Complete the identity

$$\frac{2}{\sec(x)+1} - \frac{2}{\sec(x)-1}$$

25. Given t corresponds to the point $\left(-\frac{3}{4}, \frac{\sqrt{7}}{4}\right)$ on a circle, find the value of $\sin(t) - \sec(t)$.

26. Find all solutions to $\csc(3x) - \sin(3x) = 0$ then list the answers on the interval $[0, 2\pi)$.

27. Find solutions to $\sin(2x) + \frac{1}{13}\sin(x) = 0$ on the interval $[0, 2\pi)$.

28. Evaluate each of the following:

(a)
$$\sin\left(\arccos\left(-\frac{1}{2}\right)\right)$$

(b)
$$4 \arctan \left(\cot \left(-\frac{\pi}{3}\right)\right)$$

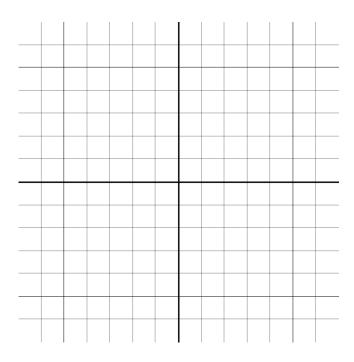
(c)
$$\tan\left(\arcsin\left(\frac{-\sqrt{2}}{2}\right)\right) + 2$$

29. Simplify the following composition, then state its domain.

 $\tan\left(\arccos\left(2x\right)\right) = \underline{\hspace{1cm}}$

30. Find all vertical asymptotes of $y = 2 \tan \left(\frac{x}{4} + \frac{\pi}{6}\right) - 5$ on the interval $\left[0, \frac{\pi}{2}\right)$

31. Emmy chooses a horse that is 10 feet from the center of a merry-go-round. The merry-go-round makes $\frac{9}{2}$ rotations per minute. Determine Emmy's angular and linear velocity in radians per second.



32. If you deposit \$2000 in an account with an annual interest rate of 3%, compounded continuously. Find the time it takes for the investment of \$2000 to grow to \$2500.

33. Find domain and range of $5\csc(2x - \frac{\pi}{3}) + 3$.

34. Given $y = 5\sin\left(\frac{1}{3}x - \frac{2\pi}{5}\right) - 4$, state the period and give an interval including the fundamental cycle of your function. Sketch the graph.

35. For $z_1 = 2 + 3i$ and $z_2 = 4 - i$, find $z_1 + z_2, z_1 - z_2, z_1 \cdot z_2$.

Note: These problems are just a sample and should not be your sole source of studying. For additional practice, refer to your lecture notes, homework and previous Week-in-Reviews. You can also find other problems in your textbook.