MATHEMATICS
TEXAS A\&M UNIVERSITY

Math 151 - Week-In-Review 12 (5.5; Final Exam) Justin Cantu

Disclaimer: This review does not cover every concept covered in MATH151 and should not be used as your sole source of study for the exam. You should also review lecture notes, Week-in-Review problems, HOGU problems, past exams quizzes, and homework.

1. Evaluate $\left.\int_{0}^{1} \frac{2 x}{\left(3 x^{2}+1\right)^{2}} d x .\left|\begin{array}{l}u \\ \text { (a) } \frac{3}{4} \\ \text { (b) } \frac{1}{4}\end{array}\right| \begin{aligned} & u=3 x^{2}+1 \\ & d u=\left(3 x^{2}+1\right)^{1} d x \\ & d u=6 x d x \Rightarrow 2 x d x=\frac{d u}{3} \\ & x=0: u(0)=3 \cdot 0^{2}+1=1 \\ & x=1: u(1)=3 \cdot 1^{2}+1=4\end{aligned} \right\rvert\,=\frac{1}{3}\left(-\frac{1}{u}\right)_{1}^{4} \frac{\frac{d u}{3}}{u^{2}}=\frac{1}{3} \int_{1}^{4} \frac{d u}{u^{2}}$
(c) $-\frac{1}{3}$
(d) $\frac{21}{64}$
(e) $\frac{21}{32}$
2. After an appropriate u-substitution, which of the following is equivalent to $\int_{x}^{u-1} d u$
(a) $\int \sqrt{u^{2}+u} d u$

$$
=-\frac{1}{3}\left(\frac{1}{4}-1\right)=-\frac{1}{3} \cdot\left(-\frac{3}{4}\right)=\frac{1}{4}
$$

(b) $\int\left(u+u^{1 / 2}\right) d u$
(c) $\int\left(u^{3 / 2}+u^{1 / 2}\right) d u$
$=\int \overbrace{(u-1) \sqrt{c} \sqrt{u}}^{x+1}<d u)=d x$
(d) $\int\left(u^{3 / 2}-u^{1 / 2}\right) d u$
(e) None of these.
$=\int[u \sqrt{u}-\sqrt{u}] d u=\int\left(u^{3 / 2}-u^{1 / 2}\right) d u$

MATHEMATICS
TEXAS A\&M UNIVERSITY
Math 151 - Fall 2023
Week-in-Review
3. For a continuous function f, if $f^{\prime}(3)=0$ and $f^{\prime \prime}(3)=7$, what can we conclude about the graph of f at $x=3$?
(a) There is a local maximum at $x=3$.

$$
\begin{aligned}
& f^{\prime}(3)=0 \rightarrow f \text { has a horizontal tangent@ } x=3 \text {. } \\
& f^{\prime \prime}(3)=7>0 \Rightarrow f \text { is concave up @ } x=3 \\
& \frac{1}{3} \text { \& has a local min @ } x=3 .
\end{aligned}
$$

(b) The absolute maximum is at $x=3$.
(c) There is a local minimum at $x=3$.
(d) The absolute minimum is at $x=3$.
(e) No conclusion can be made.

$$
24 x^{-2}+12 x+b
$$

4. Let b be a real number. Find the x-values) where $f(x)=\frac{24}{x^{2}}+12 x+b$ has a local maximum or minimum.
(a) local min at $x=\sqrt[3]{4}$ only
(b) local max at $x=0$, local min at $x=\sqrt[3]{4}$

$$
\left.f^{\prime}(x)=\frac{-2(24) x^{-3}+12}{12}=\frac{0}{12} \right\rvert\, f^{\prime}(x)=12-\frac{48}{x^{3}}>0
$$

(c) local min at $x=0$, local max at $x=\sqrt[3]{4}$

$$
-4 x^{-3}+1=0 \quad \text { or } \quad-\frac{4}{x^{3}}+1=0
$$

(d) local max at $x=\sqrt[3]{4}$ only
(e) local max at $x=0$

$$
f^{\prime}(4)>0
$$

$$
\begin{aligned}
& x=\sqrt[3]{4} \\
& x=\sqrt[3]{4}
\end{aligned}
$$ 3

$$
\text { (e) local max at } x=0
$$

$$
f^{\prime}(1)=12-48<0
$$

$$
f^{\prime}(-1)=12+48>0
$$

6. Evaluate $\lim _{x \rightarrow 0^{-}} \frac{e^{4 x}-5 \oplus 4(x+1)}{x^{2}}=\left|\frac{0}{0}\right|=\lim _{x \rightarrow 0^{-}} \frac{4 e^{4 x}+4}{2 x}\left|\frac{8}{-0}\right|=-\infty$
(a) 0
(b) 8
(c) ∞
(d) 2
(e) $-\infty$

$$
\begin{aligned}
& f(7)=7^{2}-1 \\
& f(5)=5^{2}-1 \\
& f(3)=3^{2}-1
\end{aligned}
$$

7. Approximate the area under the curve $f(x)=x^{2}-1$ on the interval $[2,8]$ using three rectangles of equal width and midpoints.
(a) 106
(b) 226
(c) 80
(d) 304
(e) 160

$$
\begin{aligned}
& A \approx f(3) \Delta x+f(5) \Delta x+f(7) \Delta x \\
& =2\left(f(3)+f(5)+f(71)=2\left(3^{2}-1+5^{2}-1+7^{2}-1\right)\right. \\
& \quad=2(9+25+49-3)=2(80)=160
\end{aligned}
$$

8. A particle has acceleration (in $\mathrm{m} / \mathrm{s}^{2}$) given by $a(t)=12 t$ on the interval $[0,10]$. If this particle has an initial velocity of $12 \mathrm{~m} / \mathrm{s}$ and position of 15 m at $t=1$, determine its position at $t=5$.
(a) 339 m

$$
v(0)=12, \quad s(1)=15, \quad s(5)=?
$$

(b) 315 m

$$
a(t)=12 t
$$

(c) 325 m
(d) 311 m
(e) 301 m

$$
v(t)=6 t^{2}+c
$$

$v(t)=6 t^{2}+12$
position $s(t)=\int v(t) d t=\int\left(6 t^{2}+12\right) d t=\frac{6 t^{3}}{3}+12 t+k=2 t^{3}+12 t+k$

$$
15=s(1)=2+12+K \text { or } 15=14+K \Rightarrow K=1
$$

$$
s(t)=2 t^{3}+12 t+1 \quad s(5)=2 \cdot 5^{3}+12(5)+1=250+60+1=311
$$

9. Rancher John wants to fence a new pasture using a straight river as one side of the boundary. If Rancher John has 1200 yards of fencing materials, what are the dimensions of the largest area of the pasture that Rancher John can enclose?
(a) 300 yards $\times 300$ yards (b) 300 yards $\times 600$ yards
(c) 250 yards $\times 700$ yards
(d) 90,000 square yards
(e) 180,000 square yards

$2 x+y=1200 \Rightarrow y=1200-2 x$
$A=x(1200-2 x)$
$A(x)=1200 x-2 x^{2}$
$A(x)=1200 x-2 x$
$A^{\prime}(x)=1200-4 x=0 \Rightarrow x=\frac{1200}{4}=300$
$y=1200-2 x=1200-2(300)=1200-600=600=y$
10. Sand is being poured at a rate of $10 \mathrm{ft}^{3} / \mathrm{min}$ onto a cone-shaped pile. If the height of the pile is always twice the base radius, at what rate is the height increasing when the pile is 8 ft high? Recall the volume of a cone is $V=\frac{1}{3} \pi r^{2} h$.
(a) $\frac{5}{64 \pi} \mathrm{ft} / \mathrm{min}$

$$
\begin{array}{r}
\frac{d V}{d t}=10 \\
r=\frac{h}{2} \Leftarrow h=2 r \\
V=\frac{1}{3} \pi r^{2} h
\end{array}
$$

(b) $\frac{5}{8 \pi} \mathrm{ft} / \mathrm{min}$

$$
\text { Find } \frac{d h}{d t} \text {, if } h=8
$$

$$
v=\frac{1}{3} \pi\left(\frac{h}{2}\right)^{2} h
$$

$$
\text { or } \quad V=\frac{1}{12} \pi h^{3}
$$

(d) $\frac{10}{9 \pi} \mathrm{ft} / \mathrm{min}$
(e) $\frac{10}{27 \pi} \mathrm{ft} / \mathrm{min}$

$$
\begin{aligned}
\frac{d V}{d t} & =\frac{1}{1 / 24} \pi 3 h^{2} \frac{d h}{d t} \Rightarrow \frac{d h}{d t}=\frac{4 \frac{d V}{d t}}{\pi h^{2}}=\frac{4(10)}{\pi \cdot 8^{2}} \\
& =\frac{40}{64 \pi}=\frac{5}{8 \pi}
\end{aligned}
$$

11. Let f be a differentiable function such that $f(3)=1$ and $f^{\prime}(3)=-3$. If $h(x)=\frac{2 f(x)}{x^{2}+1}$, find $h^{\prime}(3)$.
(a)) $-\frac{18}{25} \quad h^{\prime}(x)=\frac{2 f^{\prime}(x)\left(x^{2}+1\right)-2 f(x)(2 x)}{\left(x^{2}+1\right)^{2}}=\frac{2 f^{\prime}(x)\left(x^{2}+1\right)-4 x f(x)}{\left(x^{2}+1\right)^{2}}$
(b) $-\frac{12}{25} \quad \quad h^{\prime}(3)=\frac{2 f^{\prime}(3)\left(3^{2}+1\right)-4(3) f(3)}{\left(3^{2}+1\right)^{2}}=\frac{2(10)(-3)-12(1)}{100}=-\frac{72}{100}=-\frac{18}{25}$
(c) $\frac{18}{25}$
(d) $-\frac{26}{5}$
(e) $\frac{24}{5}$

$$
f^{\prime}(x)=-6 x+5
$$

$$
\begin{array}{l}f^{\prime}(x)=-6 x+5 \\ \text { 12. Find the value } c \text { that satisfies the conclusion of the Mean Value Theorem for } f(x)=-3 x^{2}+5 x+5 \\ \text { the interval }[0,3] \text {. }\end{array}
$$

(a) $\frac{17}{6}$

$$
\frac{f(3)-f(0)}{3-0}=f^{\prime}(c)
$$

(b) 3
(c) $\frac{3}{2}$
(d) 0
(e) $\frac{17}{18}$
$\frac{-12}{3}=-6 c+5$ or $\quad-4=-6 c+5$

$$
\begin{aligned}
& =-6 c+3 \\
& 6 c=9 \Rightarrow c=\frac{9}{6}=\frac{3}{2}
\end{aligned}
$$

13. Use logarithmic differentiation to find the derivative of $f(x)=\frac{\left(x^{3}+2 x\right)^{400}}{(1+x)^{300}}$.

$$
\begin{aligned}
& \text { (a) } f^{\prime}(x)=\left[\frac{400\left(3 x^{2}+2\right)}{x^{3}+2 x}-\frac{300}{1+x}\right] \frac{\left(x^{3}+2 x\right)^{400}}{(1+x)^{300}} \quad \ln f(x)=\ln \frac{\left(x^{3}+2 x\right)^{400}}{(1+x)^{300}} \\
& \text { (b) } f^{\prime}(x)=\left[\frac{400}{x^{3}+2 x}-\frac{300}{1+x}\right] \frac{\left(x^{3}+2 x\right)^{400}}{(1+x)^{300}} \\
& \text { (c) } f^{\prime}(x)=\frac{400\left(3 x^{2}+2\right)}{x^{3}+2 x}-\frac{300}{1+x} \\
& \text { (d) } f^{\prime}(x)=\frac{400\left(3 x^{2}+2\right)\left(x^{3}+2 x\right)^{399}}{(1+x)^{300}}-\frac{300\left(x^{3}+2 x\right)^{400}}{(1+x)^{301}} \\
& \text { (e) } f^{\prime}(x)=\frac{4\left(3 x^{2}+2\right)\left(x^{3}+2 x\right)^{399}}{3(1+x)^{299}} \\
& \frac{f^{\prime}(x)}{f(x)}=400 \frac{3 x^{2}+2}{x^{3}+2 x}-300 \frac{1}{x+1} \\
& f^{\prime}(x)=\frac{\left(x^{3}+2 x\right)^{400}}{(1+x)^{300}}\left[400 \frac{3 x^{2}+2}{x^{3}+2 x}-300 \frac{1}{x+1}\right]
\end{aligned}
$$

14. Find the t-values) where the tangent line to the curve $x=2 t^{3}-t^{2}+6 y=-t^{3}+\frac{9}{2} t^{2}-6 t$ is horizontal or vertical.
(a) horizontal at $t=1,2$; vertical at $t=0, \frac{1}{3}$

$$
\text { slope }=\frac{d y}{d x}=\frac{y^{\prime}(t)}{x^{\prime}(t)}
$$

(b) horizontal at $t=0, \frac{1}{3}$; vertical at $t=1,2$
(c) horizontal at $t=\frac{2}{3}, 1$; vertical at $t=0$
(d) horizontal at $t=0$; vertical at $t=\frac{2}{3}, 1$
horizontal tangent $\Rightarrow \frac{d y}{d x}=0$ or $y^{\prime}(t)=0$

$$
\begin{array}{r}
y^{\prime}(t)=-3 t^{2}+9 t-6=0 \\
3 t^{2}-9 t+6=0
\end{array}
$$

(e) horizontal at $t=1$; no vertical tangents

$$
\begin{aligned}
\frac{3 t^{2}-9 t+6}{3}=\frac{0}{3} \Rightarrow \begin{array}{l}
t^{2}-3 t+2=0 \\
(t-2)(t-1)=0
\end{array}
\end{aligned}
$$

HA.

$$
t_{1}=2, t_{2}=1
$$

15. Find a tangent vector of unit length to $\mathbf{r}(t)=\left\langle\sqrt{10 t+5}, e^{4 t-8}\right\rangle$ at $t=2$.
(a) $\left\langle\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right\rangle \quad \vec{r}^{\prime}(t)=\left\langle\frac{(10)}{2 \sqrt{10 t+5}}, e^{4 t-8}(4)\right\rangle$
(b) $\langle 1,1\rangle$
(c) $\langle 1,0\rangle$

$$
\vec{r}^{\prime}(t)=\left\langle\frac{5}{\sqrt{10 t+5}}, 4 e^{4 t-8}\right\rangle
$$

(d) $\left\langle\frac{1}{5}, \frac{4}{5}\right\rangle$

$$
\vec{F}^{\prime}(2)=\left\langle\frac{5}{\sqrt{25}}, 4 e^{8-8}\right\rangle=\langle 1,4\rangle
$$

(e) $\left\langle\frac{1}{\sqrt{17}}, \frac{4}{\sqrt{17}}\right\rangle$

$$
\vec{u}=\frac{\vec{r}^{\prime}(2)}{\left|\vec{r}^{\prime}(2)\right|}=\frac{\langle 1,4\rangle}{\sqrt{1+4^{2}}}=\frac{\langle 1,4\rangle}{\sqrt{1+16}}=\frac{\langle 1,4\rangle}{\sqrt{17}}
$$

16. Determine the values of a and b that make the following function differentiable everywhere:

$$
\text { (a) } a=16, b=5
$$

$$
\text { (b) } a=-2, b=9
$$

(c) $a=-\frac{5}{3}, b=\frac{28}{3}$
(d) $a=1, b=0$
(e) There are no such values.

$$
\begin{aligned}
& \text { Both } f \text { and } f^{\prime} \text { lust be continuoley. } \\
& f(x)=\left\{\begin{array}{ll}
a x^{3}+16 x & \text { if } x<1 \\
5 x^{2}+b & \text { if } x \geq 1
\end{array} \quad f^{\prime}(x)= \begin{cases}3 a x^{2}+16, & x<1 \\
10 x, & x \geqslant 1\end{cases} \right. \\
& a(1)^{3}+16(1)=5(1)^{2}+b \\
& \lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{+}} f(x) \\
& \lim _{x \rightarrow 1^{-}} f^{\prime}(x)=\lim _{x \rightarrow 1^{+}} f^{\prime}(x) \\
& 3 a+16=10 \Rightarrow 3 a=-6 \Rightarrow a=-2 \\
& \begin{array}{l}
a+16=5+b \\
b=a+11
\end{array} \Rightarrow b=11-2=9
\end{aligned}
$$

17. Suppose $\int_{5}^{9} g(x) d x=4$. Evaluate $\int_{5}^{9}[3-4 g(x)] d x=\int_{5}^{9} 3 d x-4 \int_{5}^{9} g(x) d x$
(a) 39
(b) -13
$=\left.3 x\right|_{5} ^{9}-4(4)$
(c) 19
$=3(9-5)-16=12-16=-4$
(e) -36
18. Evaluate $\int_{1}^{2}\left(\frac{9}{x^{5}}-\frac{2}{x}\right) d x=\int_{1}^{2}\left(9 x^{-5}-\frac{2}{x}\right) d x$
(a) $\frac{135}{64}-2 \ln (2)$
(b) $-\frac{135}{64}-\ln (2)$

$$
=\left[9 \frac{x^{-5+1}}{-5+1}-2 \ln |x|\right]_{1}^{2}
$$

(c) $\frac{135}{64}+2 \ln (2)$

$$
=\left[-\frac{9}{4 x^{4}}-2 \ln |x|\right]_{1}^{2}
$$

(d) $-\frac{135}{64}-2 \ln (2)$
(f) $\frac{135}{64}+\ln (2)$

$$
=-\frac{9}{4(16)}-2 \ln 2+\frac{9}{4}+2 \operatorname{la} 1^{0}
$$

$$
\begin{aligned}
=+\frac{9}{4}\left(1-\frac{1}{16}\right)-2 \ln 2 & =\frac{9}{4} \cdot \frac{15}{16}-2 \ln 2 \\
& =\frac{135}{64}-2 \ln 2
\end{aligned}
$$

19. Evaluate $\int\left(3 x^{2}-10+\frac{3}{x^{2}+1}\right) d x=\frac{3 x^{3}}{3}-10 x+3 \arctan x+C$
(a) $\frac{1}{3} x^{3}-10 x+3 \arctan x+C$
$=x^{3}-10 x+3 \arctan x+C$
(b) $\frac{1}{3} x^{3}-10 x+3 \arcsin x+C$
(c) $x^{3}-10 x+3 \arctan x+C$
(d) $x^{3}-10 x+3 \arcsin x+C$
(e) $\frac{1}{3} x^{3}-10 x+3 \tan x+C$
20. Given the points $A(1,0), B(0,2)$, and $C(3,4)$, find $\angle B A C$.
(a) $\arccos \left(\frac{3}{5}\right)$
(b) $\arccos \left(-\frac{1}{\sqrt{65}}\right)$
(c) 180°
(d) $\arccos \left(\frac{1}{\sqrt{65}}\right)$

$$
\begin{aligned}
& \overrightarrow{A B}=\langle 0-1,2-0\rangle=\langle-1,2\rangle \\
& \overrightarrow{A C}=\langle 3-1,4-0\rangle=\langle 2,4\rangle \\
& \cos (\angle B A C)=\frac{\overrightarrow{A B} \cdot \overrightarrow{A C}}{|\overrightarrow{A B}| \cdot|\overrightarrow{A C}|} \\
& =\frac{\langle-1,2\rangle \cdot\langle 2,4\rangle}{\sqrt{1+4} \cdot \sqrt{4+16}}=\frac{-2+8}{\sqrt{5} \cdot \sqrt{20}}=\frac{6}{\sqrt{5} \cdot 2 \sqrt{5}}=\frac{3}{5}
\end{aligned}
$$

(e) $\arccos \left(\frac{3}{\sqrt{17}}\right)$

$$
\angle B A C=\arccos \left(\frac{3}{5}\right)
$$

21. Find the slope of the tangent line to the graph of $x^{2} y^{2}-3 y=0$ at the point $(1,-3)$.
(a) $-\frac{5}{2}$

Implicit differentiation.
(b) $\frac{5}{2}$

$$
\frac{d}{d x}\left(x^{2} y^{2}-3 y\right)=0
$$

(c) -8

$$
2 x y^{2}+x^{2}(2 y) y^{\prime}-3 y^{\prime}=0
$$

(d) 2

$$
2 x y^{2}+y^{\prime}\left(2 x^{2} y-3\right)=0
$$

$$
y^{\prime}=-\frac{2 x y^{2}}{2 x^{2} y-3}=\frac{2 x y^{2}}{3-2 x^{2} y}
$$

$$
y^{\prime}(1,-3)=\frac{2(1)(-3)^{2}}{3-2(1)^{2}(-3)}=\frac{18}{9}=2
$$

22. Calculate $\lim _{x \rightarrow 3^{+}} \frac{x^{2}-2 x-7}{(x-3)(x-2)}=\frac{9-6-7}{0 \cdot(3-2)}=-\frac{4}{0}=-\infty$ (a) $-\infty$
(b) ∞
(c) 1
(d) -4
(e) $-\frac{7}{6}$
23. Use a linear approximation at $a=27$ to estimate $\sqrt[3]{27.2}$.
(a) $\frac{801}{270} \quad f(a+\Delta x)=f(x) \approx f(a)+f^{\prime}(a) \Delta x$

$$
f(x)=\sqrt[3]{x}=x^{1 / 3}, \quad a=27, \quad \Delta x=27.2-27=0.2
$$

(b) $\frac{1}{135}$
(c) $\frac{406}{135}$
(d) $\frac{402}{135}$
(e) $\frac{803}{270}$

$$
\begin{aligned}
& \begin{aligned}
f(x)=\sqrt[3]{x} & f(27)=^{3} \sqrt{27}=3 \\
f^{\prime}(x)=\frac{1}{3} x^{-2 / 3}=\frac{1}{3 x^{2 / 3}} & f^{\prime}(27)
\end{aligned} \\
& \begin{aligned}
& \sqrt[3]{27.2} \approx \frac{1}{3(27)^{2 / 3}}=\frac{1}{3 \cdot 9}=\frac{1}{27} \\
&=3(27)+f^{\prime}(27)(0.2) \\
&=\frac{1}{27}(0.2)
\end{aligned} \\
& =3+\frac{1}{5(27)}=3+\frac{1}{135}=\frac{405+1}{135}
\end{aligned}
$$

24. Compute $\lim _{x \rightarrow-\infty} \frac{5 e^{2 x}-8 e^{-3 x}}{3 e^{2 x}+2 e^{-3 x}} . \quad\left\{\begin{array}{l}0, \quad a>0\end{array} \quad=\lim _{x \rightarrow-\infty} \frac{-8 e^{-3 x}}{2 e^{-3 x}}=-4\right.$
(a) $0 \quad \lim _{x \rightarrow-\infty} e^{a x}= \begin{cases}0, & a>0 \\ \infty, & a<0\end{cases}$
(b) $\frac{5}{3}$
(d) $-\infty$
$\lim _{x \rightarrow \infty} \frac{5 e^{2 x}-8 e^{-3 x}}{3 e^{2 x}+2 e^{-3} 0}=\lim _{x \rightarrow \infty} \frac{5 e^{2 x}}{3 e^{2 x}}=\frac{5}{3}$
25. Calculate $\lim _{x \rightarrow \infty}[\ln (1+2 x)-\ln (2+x)] .(\infty-\infty)=\lim _{x \rightarrow \infty} \ln \frac{1+2 x}{2+x}$
(a) 0
(b) 1
(c) $\ln (2)$
(d) ∞
$=\ln \left(\lim _{x \rightarrow \infty} \frac{1+2 x}{2+x}\right)=\ln \left(\lim _{x \rightarrow \infty} \frac{x\left(1 / x^{2}+2\right)}{x\left(21 x^{0}+1\right)}\right)$
(e) $-\infty$
26. Suppose the function f has domain of all real numbers and $f^{\prime \prime}(x)=3 x\left(x^{2}-16\right)(x-4)$. Determine the x-coordinates) of any inflection points.
(a) $x=0,4,-4$ only
(b) $x=0,-4$ only
(c) $x=4,-4$ only
(d) $x=0,4$ only
(e) f has no inflection points

$$
x=-4 \text { and } x=0
$$

$$
f^{\prime \prime}(x)=3 x(\underbrace{(x-4)(x+4)}_{x^{2}-16}(x-4)
$$

$$
f^{\prime \prime}(x)=3 x(x+4)(x-4)^{2}
$$

$$
\begin{aligned}
& f^{\prime \prime}(5)=3(5)(5+4)(5-4)^{2}>0 \\
& f^{\prime \prime}(2)=3(2)(2+4)(2-4)^{2}>0 \\
& f^{\prime \prime}(-2)=3(-2)(-2+4)(-2+4)^{2}<0 \\
& f(-5)=3(-5)(-5+4)(-5-4)^{2}>0
\end{aligned}
$$

27. The position (in meters) of an object is given by $s(t)=\cos (t)+\frac{1}{4} t^{2}$. Find the times) when the acceleration of the object is $0 \mathrm{~m} / \mathrm{s}^{2}$ for $0 \leq t \leq 2 \pi$.
(a) $t=\frac{\pi}{3}, \frac{2 \pi}{3}$
velocity $\quad V(t)=s^{\prime}(t)=-\sin t+\frac{2}{4} t$
(b) $t=\frac{\pi}{6}, \frac{5 \pi}{6}$
(c) $t=\frac{4 \pi}{3}, \frac{5 \pi}{3}$
acceleration $a(t)=v^{\prime}(t)=-\cos t+\frac{1}{2}=0$
(d) $t=\frac{7 \pi}{6}, \frac{11 \pi}{6}$
$\cos t=+\frac{1}{2}$
(e) $t=\frac{\pi}{3}, \frac{5 \pi}{3}$
$t=\frac{\pi}{3}, \frac{5 \pi}{3}$

$$
\begin{aligned}
& (\arcsin u)^{\prime}=\frac{1}{\sqrt{1-u^{2}}} u^{\prime} \\
& f^{\prime}(x)=\frac{1}{\sqrt{1-\left(e^{4 x}\right)^{2}}}\left(e^{4 x}\right)^{\prime}
\end{aligned}
$$

(a) $f^{\prime}(x)=\frac{4 e^{4 x}}{\sqrt{1-e^{8 x}}}$
$=\frac{4 e^{4 x}}{\sqrt{1-e^{8 x}}}$
(d) $f^{\prime}(x)=-\frac{4 e^{4 x}}{1+e^{8 x}}$
(e) $f^{\prime}(x)=\frac{4 e^{4 x}}{1-e^{8 x}}$
29. The velocity (in m / s) of an object is given by $v(t)=3 t-7$. What is the displacement of the particle over the interval $0 \leq t \leq 4$?
(a) 4 m
(b) -32 m

$$
\begin{aligned}
\text { disfacement } & =\int_{0}^{4}(3 t-7) d t \\
& =\left[\frac{3 t^{2}}{2}-7 t\right]_{0}^{4}
\end{aligned}
$$

(c) 32 m
(d) 12 m

$$
=\frac{3(16)}{2}-7(4)=24-28=-4
$$

30. A horizontal force of 20 pounds is acting on a box as it is pushed up a ramp that is 5 feet long and inclined at an angle of 60° above the horizontal. Find the work done on the box.
(a) $50 \mathrm{ft} \cdot \mathrm{lb}$

$$
W=\vec{F} \cdot \vec{D}=|\vec{F}| \cdot|\vec{D}| \cos \theta=20(5) \cos 60^{\circ}
$$

(b) $50 \sqrt{3} \mathrm{ft} \cdot \mathrm{lb}$
(c) $50 \sqrt{2} \mathrm{ft} \cdot \mathrm{lb}$

$$
\left.\begin{array}{l|l}
|\vec{F}|=20 \\
|\vec{D}|=5
\end{array} \right\rvert\, \theta=60^{\circ}=100 \cdot \frac{1}{2}=50
$$

(d) $100 \mathrm{ft} \cdot \mathrm{lb}$
(e) $10 \mathrm{ft} \cdot \mathrm{lb}$
31. A plane is flying at 850 mph at $\mathrm{N} 45^{\circ} \mathrm{E}$. The wind is blowing at 30 mph at $\mathrm{S} 60^{\circ} \mathrm{E}$. Find the true direction of the plane.
(a) $\theta=\arctan \left(\frac{425 \sqrt{2}+15 \sqrt{3}}{425 \sqrt{2}-15}\right)$
(b) $\theta=\arctan \left(\frac{425 \sqrt{2}+15 \sqrt{3}}{425 \sqrt{2}+15}\right)$

$$
\left.=850<\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right\rangle
$$

(c) $\theta=\arctan \left(\frac{15-425 \sqrt{2}}{15 \sqrt{3}+425 \sqrt{2}}\right)$
$|\vec{P}|=850$

$$
\vec{p}=850\left\langle\cos 45^{\circ}, \sin 45^{\circ}\right\rangle
$$

(d) $\theta=\arctan \left(\frac{425 \sqrt{2}-15}{425 \sqrt{2}+15 \sqrt{3}}\right)$
(e) $\theta=\arctan \left(\frac{425 \sqrt{2}+15 \sqrt{3}}{15-425 \sqrt{2}}\right)$

$$
|\vec{w}|=30
$$

$$
\begin{gathered}
\vec{P}=\langle 425 \sqrt{2}, 425 \sqrt{2}\rangle \\
\vec{W}=30\left\langle\cos 30^{\circ}-\sin 30^{\circ}\right\rangle \\
=30\left\langle\frac{\sqrt{3}}{2},-\frac{1}{2}\right\rangle \\
\vec{W}=\langle 15 \sqrt{3},-15\rangle
\end{gathered}
$$

$$
\begin{aligned}
\vec{P}+\vec{w}= & \langle 425 \sqrt{2}+15 \sqrt{3}, 425 \sqrt{2}-15\rangle \\
\tan \theta & =\frac{425 \sqrt{2}-15}{425 \sqrt{2}+15 \sqrt{3}}, \theta=\arctan \frac{425 \sqrt{2}-15}{425 \sqrt{2}+15 \sqrt{3}}
\end{aligned}
$$

Evaluate the integral
(a) $\left.\int \frac{\arctan x}{1+x^{2}} d x|u| \begin{aligned} & u=\arctan x \\ & d u=\frac{1}{1+x^{2}} d x\end{aligned} \right\rvert\,=\int u d u=\frac{u^{2}}{2}+c=\frac{\arctan ^{2} x}{2}+c$
(b)

$$
\begin{aligned}
\int x^{3} \sqrt{x^{2}+1} d x=\left|\begin{array}{c}
x^{2}=u-1 \\
u=x^{2}+1 \\
d u=2 x d x
\end{array}\right| & =\frac{1}{2} \int\left(2 x \cdot x^{2} \sqrt{x^{2}+1} d x\right)=\frac{1}{2} \int(u-1) \sqrt{u} d u \\
& =\frac{1}{2} \int\left(u^{3 / 2}-u^{1 / 2}\right) d u
\end{aligned} \begin{aligned}
d u & \left(\frac{u^{3 / 2+1}}{\frac{3}{2}+1}-\frac{u^{1 / 2+1}}{1 / 2+1}\right]+C \\
& =\frac{1}{2}\left(\frac{u^{5 / 2}}{5 / 2}-\frac{u^{3 / 2}}{3 / 2}\right)+C \\
& =\frac{1}{2}\left(\frac{2}{5} u^{5 / 2}-\frac{2}{3} u^{3 / 2}\right)+C \\
& =\left(\frac{1}{5}\left(x^{2}+1\right)^{5 / 2}-\frac{1}{3}\left(x^{2}+1\right)^{3 / 2}+C\right.
\end{aligned}
$$

(c) $\int \frac{u}{\frac{\ln x}{x} d x} d u \quad \left\lvert\, \begin{aligned} & u=\ln x \\ & d u=\frac{d x}{x} \left\lvert\,=\int u d u=\frac{u^{2}}{2}+c=\frac{\ln ^{2} x}{2}+C\right.\end{aligned}\right.$
(d) $\int_{0}^{4} \frac{x}{\sqrt{1+2 x}} d x$

$$
\int_{0}^{4} \frac{x}{\sqrt{1+2 x}} d x \left\lvert\, \begin{aligned}
& u=1+2 x \\
& x=\frac{u-1}{2} \\
& d x=\frac{d u}{2} \\
& \text { limits: } \\
& x=0 \rightarrow u(0)=1+2 \cdot 0=1 \\
& x=4 \rightarrow u(4)=1+2 \cdot 4=9
\end{aligned}\right.
$$

$$
=\frac{1}{4} \int_{1}^{9}(u-1) u^{-1 / 2} d u
$$

$$
=\frac{1}{4} \int_{1}^{9}\left(u^{1 / 2}-u^{-1 / 2}\right) d u
$$

$$
=\frac{1}{4}\left[\frac{u^{3 / 2}}{3 / 2}-\frac{u^{1 / 2}}{1 / 2}\right]_{1}^{9}
$$

$$
=\frac{1}{42}\left[\frac{2}{3} u^{3 / 2}-2 u^{1 / 2}\right]_{1}^{9}
$$

$$
=\frac{1}{2}\left(\frac{1}{3} 9^{3 / 2}-9^{1 / 2}-\frac{1}{3}(1)+1\right]
$$

$$
=\frac{1}{2}\left(\frac{27}{3}-3-\frac{1}{3}+1\right)
$$

$1 / \ln \backslash 120110$

$$
\begin{aligned}
& =\frac{1}{3}\left(0-\overline{3}^{\top 1}\right) \\
& =\frac{1}{2}\left(\frac{26}{3}-2\right)=\frac{1}{2} \cdot \frac{20}{3}=\frac{10}{3}
\end{aligned}
$$

