

Note \$9: Sections 16.4-16.5

Problem 1. Evaluate $\oint_C y^2 dx + x dy$ where C is the triangular path from (1,1) to (3,1) to (2,2) then back to (1,1).

Problem 2. Evaluate $\oint_C (\cos(e^x) + y^2) dx + (x^2 + \sqrt{y^3 + y}) dy$, where *C* consists of the line segment from (-3, 0) to (3, 0) and the top half of $x^2 + y^2 = 9$. Assume counterclockwise orientation.

Problem 3. Evaluate $\oint_C y^2 dx + x^2 dy$ where C is the boundary of the region bounded by the semicircle $y = \sqrt{4 - x^2}$ and the x axis. Assume positive orientation.

Problem 4. Evaluate $\oint_C (y^2 + x^{10}) dx + y^7 dy$, where C is the curve that encloses the region bounded by x = 0, y = 0, and $y = x^2 - 1$, traversed counterclockwise.

Problem 5. Suppose a particle travels one revolution counterclockwise around the circle $x^2 + y^2 = 4$ under the force field $\mathbf{F}(x, y) = \langle y^3 + \sin(x), e^y - x^3 \rangle$. Find the work done by \mathbf{F} .

Problem 6. Suppose a particle travels one revolution clockwise around the unit circle under the force field $\mathbf{F}(x, y) = \langle e^x - y^3, \cos(y) + x^3 \rangle$. Find the work done by \mathbf{F} .

Problem 7. Find the divergence and curl of $\mathbf{F}(x, y, z) = xe^{yz}\mathbf{j} + x^3z\mathbf{k}$.

Problem 8. Find the divergence and curl of $\mathbf{F}(x, y, z) = \langle xyz, 2\sin(xz), y^2z^3 \rangle$.

Problem 9. Let f be a scalar field and \mathbf{F} a vector field. Describe if each expression is a scalar field, vector field, or not meaningful.

- (a) $\operatorname{curl} f$
- (b) $\operatorname{curl}(\operatorname{grad} f)$
- (c) $\operatorname{grad}(\operatorname{div} \mathbf{F})$

Problem 10. Is $\mathbf{F}(x, y, z) = \langle 3x^2y + 4y^2z, x^3 + 8xyz, 4xy^2 - e^z \rangle$ a conservative vector field? If so, find a potential function for \mathbf{F} .

Problem 11. (a) Is $\mathbf{F} = \langle x, e^y \sin z, e^y \cos z \rangle$ a conservative vector field? If so, find a potential function for \mathbf{F} .

(b) Find $\int_C \mathbf{F} \cdot d\mathbf{r}$ where $\mathbf{r}(t) = \langle t^4, t, 2t^2 \rangle$, for $1 \le t \le 2$.