Note $\sharp 9$: Sections 16.4-16.5
Problem 1. Evaluate $\oint_{C} y^{2} d x+x d y$ where C is the triangular path from $(1,1)$ to $(3,1)$ to $(2,2)$ then back to $(1,1)$.

Problem 2. Evaluate $\oint_{C}\left(\cos \left(e^{x}\right)+y^{2}\right) d x+\left(x^{2}+\sqrt{y^{3}+y}\right) d y$, where C consists of the line segment from $(-3,0)$ to $(3,0)$ and the top half of $x^{2}+y^{2}=9$. Assume counterclockwise orientation.

Problem 3. Evaluate $\oint_{C} y^{2} d x+x^{2} d y$ where C is the boundary of the region bounded by the semicircle $y=\sqrt{4-x^{2}}$ and the x axis. Assume positive orientation.

Problem 4. Evaluate $\oint_{C}\left(y^{2}+x^{10}\right) d x+y^{7} d y$, where C is the curve that encloses the region bounded by $x=0, y=0$, and $y=x^{2}-1$, traversed counterclockwise.

Problem 5. Suppose a particle travels one revolution counterclockwise around the circle $x^{2}+y^{2}=4$ under the force field $\mathbf{F}(x, y)=\left\langle y^{3}+\sin (x), e^{y}-x^{3}\right\rangle$. Find the work done by \mathbf{F}.

Problem 6. Suppose a particle travels one revolution clockwise around the unit circle under the force field $\mathbf{F}(x, y)=\left\langle e^{x}-y^{3}, \cos (y)+x^{3}\right\rangle$. Find the work done by \mathbf{F}.

Problem 7. Find the divergence and curl of $\mathbf{F}(x, y, z)=x e^{y z} \mathbf{j}+x^{3} z \mathbf{k}$.
Problem 8. Find the divergence and curl of $\mathbf{F}(x, y, z)=\left\langle x y z, 2 \sin (x z), y^{2} z^{3}\right\rangle$.
Problem 9. Let f be a scalar field and \mathbf{F} a vector field. Describe if each expression is a scalar field, vector field, or not meaningful.
(a) $\operatorname{curl} f$
(b) $\operatorname{curl}(\operatorname{grad} f)$
(c) $\operatorname{grad}(\operatorname{div} \mathbf{F})$

Problem 10. Is $\mathbf{F}(x, y, z)=\left\langle 3 x^{2} y+4 y^{2} z, x^{3}+8 x y z, 4 x y^{2}-e^{z}\right\rangle$ a conservative vector field? If so, find a potential function for \mathbf{F}.

Problem 11. (a) Is $\mathbf{F}=\left\langle x, e^{y} \sin z, e^{y} \cos z\right\rangle$ a conservative vector field? If so, find a potential function for \mathbf{F}.
(b) Find $\int_{C} \mathbf{F} \cdot d \mathbf{r}$ where $\mathbf{r}(t)=\left\langle t^{4}, t, 2 t^{2}\right\rangle$, for $1 \leq t \leq 2$.

