Week in Review
Math 152

Week 10
Alternating series
Absolute Convergence and the Ratio Test

Department of Mathematics | Texas A&M University | Minchul Kang



AlM Week 10

| lim a, =0?

| No

e Yes

Any special type series ?
* Geometric series

* P-series

* Telescoping series

* Alternating series

Yes

i Divergent

J{No

Integral test
Known antiderivative ?

Convergent Condition

e Irl<1

- p>1

* Converges
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= 2Dk k R
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alternating

Explain why following two series do

NOT converge

n
1. Zﬁ:lm

2. Yp= (D)7

1
3. Z‘Iolo:l el/n
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Definition: Alternating series

An infinite series of the form of

(@) Xper (=1  ay (b) Xio1 (=1 ay
where a; > 0

Theorem (Alternating Series Test): Alternating series with diminishing oscillation

converges
An alternating series converges if the following two conditions are satisfied:

(@) ax > ag+1 > ag42 > Agy3 >
(b) lim a;, = 0
k—oo

* S1,53,Ss5, """, Son—1, " : {San—1} is decreasing . a, .
sequence bounded below by 0. ) .
i . < 2 >
* S5,54,Sg, """, Som, 0 {Son ) iS increasing sequence .
- 3 -
bounded above bya;.
. «— d; —>
* Since bounded monotone sequences converge both *
- GS—J-
{son—1} and {s,,,} converge.
¢ hm (SZn - SZn—l) — hm aZn = 0 — %
n—>00 n—>0o
e lim sy, = lim s,,,_; = lim s, converges . o . o>

n—oo n—oo n—oo 0 S Sy S5 5y s, = a,
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No
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Definition: Absolute convergence for general mixed sign series

* Aseries Y uy(uy be positive or negative) is said to converge absolutely if 3 |u|
converges

* Aseries Yu,(uy be positive or negative) is said to converge conditionally if Y u;,
converges but Y |uy| diverges

Absolute convergence Theorem

If ¥'|uy | converges then Y u; converges
* If Yuy diverges, then Y |uy| diverges
* If Y |ug| converges then ,}im u, =0

Write Ypq U = Dpeql (g + [ugl) — lugl]
» Since 0 < uy + |ug| < 2|ug|and X 2|ugl = 2 Y= |ugl (converges), by
comparison test ) y—;(u, + |ug|) converges
* Now that Y.y~ (uy + lug|) converge, and Y.~ |ug| converges, by the limit
theorem of series, Y1 U = D1l (g + |ugl) — |ugl] converges
i Zak = Sa and Zbk = Sb = Z(ak + bk) = Sa + Sb
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Inn
Does).p—q — converge?

If so, how?
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No = 2+sinn
‘ lima,=07? | | Divergent ‘ Does 0 — converge?
TYes - Zn=1 n2 ger
Any special type series ? Convergent Condition If SO hOW?
* Geometric series Yes " Iri<1 ’ .
. 1
* P-series . g >
» Telescoping series . llonverglei —0 Sil’l
 Alternating series nl_r&(— yiay = DoeSZn 1 Converge?
J{No n
Integral test Convergent Condition |f SO, how?
Known antid;rivative ? floof(x)dx <
No .
+Sln
Long term behavior ‘—I DOeszn 2 o COnverge?
- If so, how?
Comparison test Limit Comparison test Ratio/root test
Ya, <Ihy <L hmb —L lim ;’“—p<1
n—co Un n
(coryergent) Ih;, < oo : convergent Zay lim ()" = p <1 .
o =Zh <Tap | |g kT o e Since
(divergent) k — 0 :divergent Ldy convergent
yr0 1 2 2+sinn n o <y®
Tl_l n=1 2 n= 1
+/- terms but Not alternating nd Z . Z < 0,
= Absolute convergence a n=1 2 n= 1
2+Sll’l n
anl n2 < ®

k 2+sinn
. 0 _ 0.0) —_

2+sinn

k
. (0'e) — —_—
Since anznlnn = 00, Zn:l n2 = ®
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X X

. ey T . . ai's . (y o
Suppose ) ay, and ) b, are series with positive terms and lim — = (. Circle the
n—+o 0y,
n=]| n=1 2

true statement(s):

™~ ~
If E b, is convergent, then E a,, is convergent.
n=1 n=I1
x X
If ; b, is divergent. then E ay, is divergent.
—
n=1 n=1
X x
If E ay, is convergent, then E b, is divergent.,
n 1 n 1
X X
If E b, is convergent, then E a, is divergent,
n=1 n=1

There is not enough information.
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?
Does) . - 1(n+1)( iz, converge:

If so, how?
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Which of the following statements is true for the following series?

(M Z Erz,_%l—): (1) Z n((lnlg:)L3 (TI) Z (—i;”n

(a) T and III converge conditionally, and II diverges.
(b) I converges conditionally, II converges absolutely, and III diverges.
c) I and II converge conditionally, and III diverges.

(
(d) I, II, and IIT converge conditionally.

(e) I, II, and III converge absolutely.
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(-1 (3n+1)
n!

converge?

Does). 1

If so, how?
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Does) . - 13z converge?

If so, how?
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(10 points) Determine whether the following series is absolutely convergent, conditionally convergent,
or divergent. Show all work, as illustrated in class, by naming the test(s), applying the test(s), and
drawing the correct conclusion(s).

= (1)
Z .n2+1

n=1
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Determine whether the series converges or diverges. Justify.

0 3 i
Yim=q M° sin (n3)

Determine whether the series converges or diverges. Justify.

Yim=q nsin ( - )

n3
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