

Math 151 - Week-In-Review 2

V. Coffelt

Topics for the week:

- J.2 The Dot Product
- J.3 Vector Functions and Parametric Curves
- 2.2 The Limit of a Function

J.2 The Dot Product

- 1. Given vectors $\mathbf{u} = \mathbf{i} + 3\mathbf{j}$ and $\mathbf{v} = -2\mathbf{j}$, compute each of the following.
 - (a) $\mathbf{u}\cdot\mathbf{v}$

(b)
$$\left(-\frac{2}{7}\mathbf{v}\right)\cdot\left(\frac{4}{5}\mathbf{u}\right)$$

(c) $(\mathbf{v} \cdot \mathbf{u}) \mathbf{u}$

(d) Compute the angle between vectors \mathbf{u} and \mathbf{v} , leave your answer in exact form.

- 2. Given vectors $\mathbf{u} = \langle -5, 12 \rangle$, $\mathbf{v} = \langle 6, 0 \rangle$, and $\mathbf{w} = \left\langle -\frac{2}{5}, -\frac{3}{2} \right\rangle$, compute each of the following.
 - (a) $\mathbf{u} \cdot \mathbf{w}$

(b) $2(\mathbf{v} \cdot \mathbf{u})$

(c) $(2\mathbf{v}) \cdot \mathbf{u}$

(d) The angle between vectors \mathbf{v} and \mathbf{w} , leave your answer in exact form.

(e) The orthogonal complement of ${\bf w}$

3. Determine the scalar product of two vectors, \vec{a} and \vec{b} , if \vec{a} has a length of 6 and $|\vec{b}| = 15$ and the smaller angle between the vectors is $\frac{3\pi}{4}$.

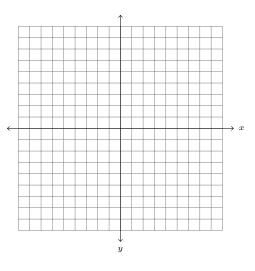
4. $\mathbf{u} = \left\langle -5, \frac{1}{2} \right\rangle$ and $\mathbf{v} = \langle 3, c \rangle$, determine the value of c such that the vectors are orthogonal.

- 5. Given vectors $\vec{u} = \left\langle \frac{3}{2}, -\frac{1}{2} \right\rangle$ and $\vec{w} = \langle 4, 8 \rangle$, compute each of the following.
 - (a) Scalar projection of \vec{u} onto \vec{w}

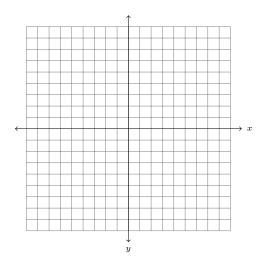
(b) Vector projection of \vec{u} onto \vec{w}

6. Determine the distance between the line, 3x + y = 5 and the point (4, 1), using vectors.

7. A kid pushes a sled 30 ft up a hill with an incline of 5°. The horizontal force exerted on the sled is 10 lbs. Determine the work done on the sled.


- 8. An object is moved along a straight line from the point (1, 7) to the point (5, 16) at a constant force $\mathbf{F} = 14\mathbf{i} + 20\mathbf{j}$. Assuming the distance is measured in meters and the magnitude of the force is measured in newtons, determine each of the following:
 - (a) Displacement vector, **D**.

(b) Work, W.



J.3 Vector Functions and Parametric Curves

9. Sketch the curve generated by the parametric equations, $x = t^2 - 13$, $y = \sqrt{4-t}$, for $-5 \le t \le 3$. Then write the Cartesian equation for the the curve.

10. Sketch the curve generated by the parametric equations, $x = \cos(t)$, $y = 3 \sec t$, for $\frac{\pi}{2} < t < \pi$. Then write the Cartesian equation for the the curve.

- 11. Given the position of an object moving in the Cartesian plane is $\mathbf{r}(t) = \langle e^{2t}, e^{-t} \rangle$ after *t*-seconds, determine each of the following:
 - (a) The position of the object after 3 seconds.

(b) At what time is the object at the point (1,1)?

(c) Does the object ever pass through the point $(\frac{1}{e^2}, e)$?

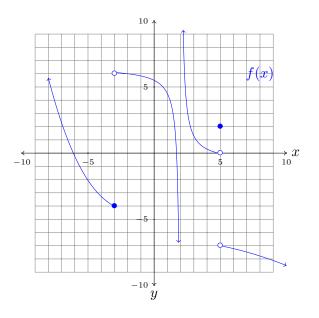
12. Write a vector equation of the line y = 4x - 8. (Hint: Use (0, -8) as $P_{0.}$)

13. Write a vector equation of the line perpendicular to the line y = 6x - 7 and passing through the point (0, -7).

14. Write a parametric equation of the line passing through the points (12, 5) and (9, -2).

15. Determine the parametric equations for the line that passes through the point (3,-1) and is
(a) is parallel to the vector \$\langle -5, -4 \rangle\$.

(b) is perpendicular to the vector $\langle -5, -4 \rangle$.


16. State the slope of the line with corresponding vector equation $\mathbf{r}(t) = \langle 5 - 2t, -8 + 7t \rangle$.

17. Determine whether the lines, $L_1 = \mathbf{r}(t) = (-6 + 2t)\mathbf{i} + (7 - 6t)\mathbf{j}$ and $L_2 = \mathbf{r}(s) = \left(5 + \frac{1}{2}s\right)\mathbf{i} + \left(-8 + \frac{3}{2}s\right)\mathbf{j}$, are parallel, perpendicular, or neither.

2.2 The Limit of a Function

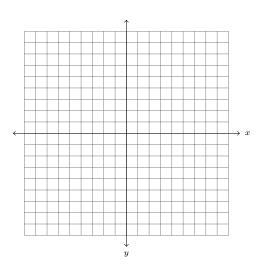
18. Use the graph provided to answer each of the following:

a. $\lim_{x \to -3^{-}} f(x)$ b. $\lim_{x \to -3^{+}} f(x)$ c. $\lim_{x \to 2^{-}} f(x)$ d. $\lim_{x \to 5} f(x)$

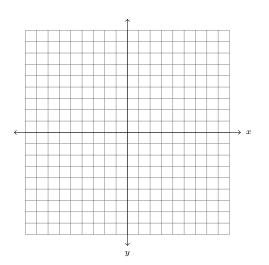
19. If $\lim_{x \to 4^-} f(x) = -25$ and $\lim_{x \to 4^+} f(x) = -26$, what can we say about $\lim_{x \to 4} f(x)$?

20. If $\lim_{x \to 4^-} f(x) = -\infty$ and $\lim_{x \to 4^+} f(x) = -\infty$, what can we say about the function f(x) at x = 4 and the graph of f(x) at x = 4.

21. Evaluate each of the following limits.


(a)
$$\lim_{x \to -8^+} \left(\frac{x^2 + 3x + 1}{8 + x} \right)$$

(b)
$$\lim_{x \to 3^{-}} \left(\frac{1-x}{2x-6} \right)$$


- 22. Sketch the graph of a function, g(x), that satisfy the conditions below:
 - g(-3) = -2
 - g(5) is undefined
 - $\lim_{x \to -6^-} g(x) = \infty$
 - $\lim_{x \to -6^+} g(x) = -\infty$
 - $\lim_{x \to -3^-} g(x) = 5$

•
$$\lim_{x \to -3^+} g(x) = 5$$

•
$$\lim_{x \to 5} g(x) = 4$$

23. Sketch the graph of
$$h(x) = \frac{x}{(3x - 12)^2}$$
.

