Week in Review Math 152

Week 14

10.1 Review of Parametric Equations

10.2 Arc Length and Surface Area of Parametric Curves 10.3 Polar Coordinates

Identify the particle's path by finding a Cartesian equation for it.

- $x=4 \sin t, y=5 \cos t(0 \leq t \leq 2 \pi)$
- $x=1+\sin t, y=\cos t-1(0 \leq t \leq \pi)$
- $x=\sqrt{t+1}, y=\sqrt{t}(t \geq 0)$

Parametric Equations \Rightarrow Cartesian equation
(Remove the parameter)
A parametric Equation has an orientation and domain

Review of Parametric Equation

Finding Parametric Equations
Find a parametrization for the curve.

- The lower half of the parabola $x-1=y^{2}$
- The ray (half line) with initial point $(2,3)$ that passes through the point $(0,0)$
- Find parametric equations and a parameter interval for the motion of a particle starting at the point $(2,0)$ and tracing the top half of the circle $x^{2}+y^{2}=4$ four times.

Parametric Equations are not unique

$\widehat{\mathbf{A}}$ Review of Parametric Equations

A wheel of radius a rolls along a horizontal straight line. Find parametric equations for the path traced by a point P on the wheel's circumference. The path is called a cycloid.

$\widehat{\mathbf{M}}$ Review of Parametric Equations

Find the velocity and speed of the motion along the following parameterized curve as a function of time : $x=t, y=t^{2}$

Position: $\mathbf{x}(t)=(x(t), y(t))$
Velocity: $\mathbf{v}(t)=\mathbf{x}^{\prime}(t)=\left(x^{\prime}(t), y^{\prime}(t)\right)$

Speed : $\|\mathbf{v}(t)\|=\sqrt{\left(x^{\prime}(t)\right)^{2}+\left(y^{\prime}(t)\right)^{2}}$

$\sqrt{\mathbf{A}}$ Length of Parametric Equations

Find the lengths of the curves

- $x=\cos t, y=t+\sin t(0 \leq t \leq \pi)$
- $x=\frac{1}{3}(2 t+3)^{3 / 2}, y=t+\frac{t^{2}}{2}(0 \leq t \leq 3)$

$\sqrt{\mathbf{A}}$ Length of Parametric Equations

Find the lengths of the curves

- $x=8 \cos t+8 t \sin t, y=8 \sin t-8 t \cos t(0 \leq t \leq \pi / 2)$

$\widehat{\mathbf{A}}$ Surface area of Parametric Equations

Find the areas of the surfaces generated by revolving the curves

- $x=\cos t, y=2+\sin t(0 \leq t \leq 2 \pi) ; x$-axis
- $x=\ln (\sec t+\tan t)-\sin t, y=\cos t(0 \leq t \leq \pi / 3) ; x$-axis

Find the Cartesian coordinates of the following points

- $\left(\sqrt{2}, \frac{\pi}{4}\right)$
- $(1,0)$

Find the polar coordinates, $0 \leq \theta \leq 2 \pi$ and $r \geq 0$ of the following points given in Cartesian coordinates.

- $(\sqrt{3},-1)$
- $(-3,4)$

Polar coordinates

Polar graphs
Graph the sets of points whose polar coordinates satisfy the equations and inequalities

- $r=1$
- $1 \leq r \leq 2$
- $\theta=\pi / 4$
- $\frac{\pi}{3} \leq \theta \leq \frac{\pi}{4}, 1 \leq r \leq 2$

Polar coordinates
 Polar graphs

Match the polar equations with the graphs labeled

1. $r=\sin \theta$
2. $r=\sin 2 \theta$
3. $r=\sin 3 \theta$
4. $r=\sin 4 \theta$
5. $r=\sin 5 \theta$
6. $r=\sin 6 \theta$
7. $r=\cos \theta$
8. $r=\cos 2 \theta$
9. $r=\cos 3 \theta$
10. $r=\cos 4 \theta$
11. $r=\cos 5 \theta$
12. $r=\cos 6 \theta$

Polar coordinates

Polar graphs
Match the polar equations with the graphs labeled

1. $r=0.5+\cos \theta$
2. $r=1+\cos \theta$
3. $r=1.5+\cos \theta$
4. $r=2+\cos \theta$

TM Polar coordinates

Polar to Cartesian Equations

Find the Cartesian equations.

- $r=4 \tan \theta \sec \theta$
- $r \sin \theta=\ln r+\ln \cos \theta$
- $r=\cos \theta$

