

Week in Review Math 152

Week 05

Trigonometric Integrals Trigonometric Substitution Integration by Partial Fractions

Compute $\int \cos^2(x) \sin^2(x) dx$

Trigonometric Integrals

The region bounded by $y = \cos x$ and the x-axis on the interval $\left[0, \frac{\pi}{2}\right]$ is rotated about the x-axis. Find the volume of the resulting solid.

(a) $\frac{\pi}{4}$ (b) $\frac{\pi^2}{4}$ (c) 1 (d) $\frac{\pi^2}{2}$ (e) $\frac{\pi}{2}$

Trigonometric Integrals

Which of the following is equal to $\int_{0}^{\pi/4} \tan^{2}(\theta) \sec^{4}(\theta) d\theta$? (a) $\int_{0}^{\pi/4} u^{2}(u^{2} - 1) du$ (b) $\int_{0}^{\pi/4} u^{2}(1 + u^{2}) du$ (c) $\int_{0}^{\sqrt{2}/2} u^{2}(1 + u^{2}) du$ (d) $\int_{0}^{1} u^{2}(u^{2} - 1) du$ (e) $\int_{0}^{1} u^{2}(1 + u^{2}) du$

Compute $\int \tan^3(x) \sec^3(x) \, dx$ (a) $\frac{1}{5} \sec^5(x) - \frac{1}{3} \sec^3(x) + C$ (b) $-\frac{1}{5} \sec^5(x) + \frac{1}{3} \sec^3(x) + C$ (c) $\frac{1}{5} \tan^5(x) - \frac{1}{3} \tan^3(x) + C$ (d) $-\frac{1}{5} \tan^5(x) + \frac{1}{3} \tan^3(x) + C$ (e) $-\sec^4(x) + \sec^2(x) + C$

Compute
$$\int \cos^4(x) \sin^5(x) \, dx$$

(a) $-\frac{1}{5} \cos^5(x) + \frac{1}{9} \cos^9(x) + C$
(b) $\frac{1}{6} \sin^6(x) - \frac{1}{4} \sin^8(x) + \frac{1}{10} \sin^{10}(x) + C$
(c) $\frac{1}{6} \sin^6(x) - \frac{1}{10} \sin^{10}(x) + C$
(d) $-\frac{1}{5} \cos^5(x) + \frac{2}{7} \cos^7(x) - \frac{1}{9} \cos^9(x) + C$
(e) None of these.

Evaluate
$$\int \tan^3(x) \sec^5(x) \, dx$$
.
(a) $\frac{1}{7} \tan^7 x - \frac{1}{5} \sec^5 x + C$
(b) $\frac{1}{7} \sec^7 x - \frac{1}{5} \tan^5 x + C$
(c) $\frac{1}{4} \sec^6 x - \frac{1}{6} \tan^{10} x + C$
(d) $\frac{1}{4} \sec^4 x - \frac{1}{6} \tan^6 x + C$
(e) $\frac{1}{7} \sec^7 x - \frac{1}{5} \sec^5 x + C$

Compute
$$\int \cos^3(2x) dx$$

(a) $-\sin(2x) + \frac{1}{3}\sin^3(2x) + C$
(b) $\frac{-1}{2}\sin(2x) + \frac{1}{6}\cos^3(2x) + C$
(c) None of these.
(d) $\sin(2x) - \frac{1}{3}\sin^3(2x) + C$
(e) $\frac{1}{2}\sin(2x) - \frac{1}{6}\sin^3(2x) + C$

Compute
$$\int_0^{\pi/4} \sec^4(x) dx$$

(a) $\frac{2}{3}$
(b) $\frac{32}{5}$
(c) $\frac{4}{3}$
(d) $\frac{4\sqrt{2}}{5}$
(e) $\frac{2\sqrt{2}-1}{3}$

Compute $\int \cos^2(x) \sin^2(x) dx$

Find $\int \cos^4 x \, dx$

Compute $\int 2\sin^2(2\theta) d\theta$	Compute $\int_0^{\pi/3} \tan^3(\theta) \sec(\theta) d\theta$
(a) $\theta - \frac{1}{2}\sin(2\theta) + C$	(a) $\frac{4}{3}$
(b) $\theta - \frac{1}{4}\sin(4\theta) + C$	(b) $\frac{16 - 9\sqrt{3}}{24}$
(c) $\theta + \frac{1}{2}\sin(2\theta) + C$	(c) $\frac{2}{3}$
(d) $\theta + \frac{1}{4}\sin(4\theta) + C$	(d) $\frac{-3\sqrt{3}}{8}$
(e) None of the above	(e) None of the above

$$\int_{0}^{\pi/2} \cos^{3} x \sin^{3} x \, dx = \int \tan^{4} x \sec^{4} x \, dx =$$
(a) $\frac{1}{12}$
(b) $\frac{2}{15}$
(c) $\frac{5}{12}$
(c) $\frac{5}{12}$
(c) $\frac{-1}{12}$
(c) $\frac{-1}{12}$
(c) $\frac{-2}{15}$
(c) $\frac{1}{12}$

Compute $\int_0^{\pi/2} \sin(2x) \cos x dx.$	$\int_0^{\pi/4} \sin^2(x) dx =$	
(a) $\frac{3}{2}$	(a) $\frac{\pi}{8} - \frac{1}{4}$	
(b) $\frac{2}{3}$	(b) $\frac{\pi}{8}$	
(c) 0 (d) 1	(c) $\frac{\pi}{8} - \frac{1}{2}$	
(e) $\frac{1}{2}$	(d) $\frac{2}{\sqrt{\pi}} - \frac{\pi}{\sqrt{\pi}}$	
	$\sqrt{2}$ $2\sqrt{2}$ π 1	
	(e) $\frac{n}{8} + \frac{1}{4}$	

Evaluate $\int \frac{1+x}{1+x^2} dx.$ (a) $\frac{1}{2} \ln(1+x^2) + C$ (b) $\frac{3}{2} \ln(1+x^2) + C$ (c) $\ln(1+x^2) + C$ (d) $\frac{1}{2} \ln(1+x^2) + \arctan x + C$ (e) $\arctan x + \arcsin(x^2) + C$

Trigonometric Substitution

After an appropriate substitution, the integral $\int \sqrt{x^2 + x} \, dx$ is equivalent to which of the following?

(a)
$$\int \tan^2 \theta \sec \theta \, d\theta$$

(b)
$$\frac{1}{4} \int \sec^3 \theta \, d\theta$$

(c)
$$-\frac{1}{4} \int \sin^2 \theta \, d\theta$$

(d)
$$\frac{1}{4} \int \tan^2 \theta \sec \theta \, d\theta$$

(e)
$$\int \cos^2 \theta \, d\theta$$

Compute the following integral showing all necessary work clearly.

$$\int \frac{1}{(x^2+9)^{5/2}} \, dx$$

Which of these substitutions would be

used to evaluate $\int x^2 \sqrt{x^2 + 4x + 13} \, dx$?

- (a) $x + 4 = \sqrt{13} \sec \theta$
- (b) $x + 2 = 3 \tan \theta$
- (c) $x^2 + 4x = \sqrt{13} \tan \theta$
- (d) none of these.
- (e) $x + 2 = 3 \sec \theta$

After an appropriate trigonometric substitution,

$$\int_{2\sqrt{2}}^{4} \frac{\sqrt{x^2 - 4}}{x} dx \text{ is equivalent to}$$
(a) $2 \int_{\pi/4}^{\pi/3} \tan^2 \theta \, d\theta$
(b) $\int_{\pi/4}^{\pi/3} \sin(\theta) \, d\theta$
(c) $2 \int_{\pi/4}^{\pi/6} \tan^2 \theta \, d\theta$
(d) $\int_{\pi/4}^{\pi/6} \sin(\theta) \, d\theta$

(e) None of the above

After an appropriate substitution, the integral $\int x^2 \sqrt{9 - x^2} \, dx$ is equivalent to which of the following? (a) $9 \int \cos^2 \theta \, d\theta$ (b) $81 \int \sin^2 \theta \cos^2 \theta d\theta$ (c) $27 \int \sin^2 \theta \cos \theta \, d\theta$ (d) $81 \int \sec^3 \theta \tan^2 \theta \, d\theta$ (e) $27 \int \sec^2 \theta \tan \theta \, d\theta$

Compute
$$\int_{0}^{4} \frac{x+2}{x^{2}+4} dx.$$
(a) $\frac{1}{2} (\ln 20 - \ln 4) + \arctan(2)$
(b) $\ln 6 - \ln 2$
(c) $\ln 20 - \ln 4$
(d) $\frac{1}{2} (\ln 20 - \ln 4) + 2 \arctan(4)$
(e) $\ln 20 - \ln 4 + 2 \arctan(4)$

Which of the following is an appropriate substitution to use when solving the integral $\int \sqrt{16x^2 - 9} \, dx$? (a) $x = \frac{3}{4} \sin \theta$ (b) $x = \frac{4}{3} \sec \theta$ (c) $x = \frac{4}{3} \sin \theta$ (d) $x = \frac{3}{4} \sec \theta$ (e) $x = \frac{3}{4} \tan \theta$

Which of the following integrals is equivalent to $\int \sqrt{4x^2 - 9} \, dx$?

(a)
$$2 \int \sec \theta \tan^2 \theta \ d\theta$$

(b) $\frac{9}{2} \int \tan \theta \ d\theta$
(c) $\frac{9}{2} \int \sec \theta \tan^2 \theta \ d\theta$
(d) $\frac{9}{2} \int \sec^2 \theta \tan \theta \ d\theta$
(e) $2 \int \sec^2 \theta \tan \theta \ d\theta$

Compute $\int \frac{1}{x^4\sqrt{x^2-4}} dx$. In your final answer, any trig

or inverse trig expressions that can be rewritten algebraically must be.

After an appropriate trigonometric substitution,

$$\int_{2\sqrt{2}}^{4} \frac{\sqrt{x^2 - 4}}{x} dx \text{ is equivalent to}$$
(a) $2 \int_{\pi/4}^{\pi/3} \tan^2 \theta \, d\theta$
(b) $\int_{\pi/4}^{\pi/3} \sin(\theta) \, d\theta$
(c) $2 \int_{\pi/4}^{\pi/6} \tan^2 \theta \, d\theta$
(d) $\int_{\pi/4}^{\pi/6} \sin(\theta) \, d\theta$
(e) None of the above

After an appropriate trigonometric substitution,

$$\int \frac{dx}{\sqrt{x^2 + 8x + 41}}$$
 is equivalent to which of the following?
(a) $\frac{1}{5} \int \cos(\theta) \, d\theta$
(b) $\int \sec(\theta) \, d\theta$
(c) $\int \sec^2(\theta) \, d\theta$
(d) $\int \tan(\theta) \, d\theta$
(e) $\frac{1}{5} \int \sin(\theta) \, d\theta$

After an appropriate substitution, the integral

$$\int \sqrt{9 - x^2} \, dx \text{ is equivalent to which of the following?}$$
(a) $9 \int \sec \theta \tan^2 \theta \, d\theta$
(b) $3 \int \cos \theta \, d\theta$
(c) $9 \int \sec^3 \theta \, d\theta$
(d) $9 \int \cos^2 \theta \, d\theta$
(e) $3 \int \tan \theta \, d\theta$

Which of the following integrals is

equivalent to
$$\int \frac{1}{(x^2 - 4x + 5)^{3/2}} dx?$$
(a) $\frac{1}{9} \int \cos \theta \, d\theta$
(b) $\int \cos^3 \theta \, d\theta$
(c) $\frac{1}{27} \int \cos^3 \theta \, d\theta$
(d) $\int \sec \theta \, d\theta$
(e) $\int \cos \theta \, d\theta$

If we use the appropriate trigonometric substitution to evaluate

$$\int_{1}^{2/\sqrt{3}} \left(\frac{\sqrt{x^2 - 1}}{x}\right) dx$$
, which of the following is the correct result?

(a)
$$\int_{0}^{\pi/6} \tan^{2} \theta \, d\theta$$

(b)
$$\int_{0}^{\pi/6} \frac{\tan \theta}{\sec \theta} \, d\theta$$

(c)
$$\int_{0}^{\pi/3} \tan^{2} \theta \, d\theta$$

(d)
$$\int_{\pi/2}^{\pi/6} \sin^{2} \theta \, d\theta$$

(e)
$$\int_{\pi/2}^{\pi/3} \sin^{2} \theta \, d\theta$$

Find
$$\int \frac{x^2}{\sqrt{4-x^2}} dx$$

Evaluate
$$\int \frac{1}{x^2\sqrt{x^2+4}} dx.$$

Integration by Partial Fractions

Which of the following is the form of the partial-fraction decomposition for the rational function?

$$\frac{1}{(x+1)(x^2-2x-3)(x^2-2x+2)}$$
(a) $\frac{A}{x+1} + \frac{Bx+C}{x^2-2x-3} + \frac{Dx+E}{x^2-2x+2}$
(b) $\frac{A}{x+1} + \frac{Bx+C}{(x+1)^2} + \frac{D}{x-3} + \frac{Ex+F}{x^2-2x+2}$
(c) $\frac{A}{x+1} + \frac{B}{(x+1)^2} + \frac{C}{x-3} + \frac{D}{x^2-2x+2}$
(d) $\frac{A}{x+1} + \frac{B}{(x+1)^2} + \frac{C}{x-3} + \frac{Dx+E}{x^2-2x+2}$
(e) $\frac{A}{x+1} + \frac{B}{x^2-2x-3} + \frac{C}{x^2-2x+2}$

$$\frac{1}{(x+1)(x-3)(x+1)(x^2-2x+2)} = \frac{1}{(x+1)^2(x-3)(x^2-2x+2)} = \frac{A}{(x+1)} + \frac{B}{(x+1)^2} + \frac{C}{x-3} + \frac{Dx+E}{x^2-2x+2}$$

Compute the following integral showing all necessary work clearly.

$$\int \frac{4x^2 - 5x + 11}{(x+1)(x-1)(x^2+4)} \, dx$$

Integration by Partial Fractions

$$\int \frac{x^3 + x}{x - 1} dx =$$
(a) $\frac{x^3}{3} + \frac{x^2}{2} + 2x - 2\ln|x - 1| + C$
(b) $\frac{x^3}{3} - \frac{x^2}{2} + 2x + 2\ln|x - 1| + C$
(c) $\frac{x^3}{3} + \frac{x^2}{2} + 2x + 2\ln|x - 1| + C$
(d) $\frac{x^3}{3} + \frac{x^2}{2} - 2x + 2\ln|x - 1| + C$
(e) $\frac{x^3}{3} - \frac{x^2}{2} + 2x - 2\ln|x - 1| + C$

Find $\int \frac{x+2}{x^2(x^2+1)} dx$

Integration by Partial Fractions (Exercise)

Write out the form of the partial fraction decomposition of the function

$$\begin{split} f(x) &= \frac{x^3 - 2x^2 - 5x + 4}{(x+2)^2(x^2-1)(x^2+5x+7)} \\ (a) \ \frac{A}{x+2} + \frac{B}{(x+2)^2} + \frac{C}{x-1} + \frac{D}{x+1} + \frac{Ex+F}{x^2+5x+7} \\ (b) \ \frac{A}{x+2} + \frac{B}{(x+2)^2} + \frac{Cx+D}{x^2-1} + \frac{Ex+F}{x^2+5x+7} \\ (c) \ \frac{A}{(x+2)^2} + \frac{B}{x-1} + \frac{C}{x+1} + \frac{Dx+E}{x^2+5x+7} \\ (d) \ \frac{A}{(x+2)^2} + \frac{B}{x^2-1} + \frac{Cx+D}{x^2+5x+7} \\ (e) \ \frac{Ax+B}{(x+2)^2} + \frac{Cx+D}{x^2-1} + \frac{Ex+F}{x^2+5x+7} \end{split}$$

Integration by Partial Fractions (Exercise)

Which of the following is a proper Partial Fraction Decomposition for $\frac{x+1}{(x^2-16)(x-3)^2(x^2+1)}?$ (a) $\frac{x+1}{(x^2-16)(x-3)^2(x^2+1)} = \frac{Ax+B}{x^2-16} + \frac{C}{x-3} + \frac{D}{(x-3)^2} + \frac{Ex+F}{x^2+1}$ (b) $\frac{x+1}{(x^2-16)(x-3)^2(x^2+1)} = \frac{A}{x-4} + \frac{B}{x+4} + \frac{C}{x-3} + \frac{D}{(x-3)^2} + \frac{Ex+F}{x^2+1}$ (c) $\frac{x+1}{(x^2-16)(x-3)^2(x^2+1)} = \frac{Ax+B}{x^2-16} + \frac{Cx+D}{(x-3)^2} + \frac{Ex+F}{x^2+1}$ (d) $\frac{x+1}{(x^2-16)(x-3)^2(x^2+1)} = \frac{A}{x-4} + \frac{B}{x+4} + \frac{C}{x-3} + \frac{D}{(x-3)^2} + \frac{E}{x^2+1}$ (e) $\frac{x+1}{(x^2-16)(x-3)^2(x^2+1)} = \frac{A}{x-4} + \frac{B}{(x-4)^2} + \frac{C}{x-3} + \frac{D}{(x-3)^2} + \frac{Ex+F}{x^2+1}$

Which of the following is a proper Partial Fraction Decomposition for the rational function

$$\frac{5x+1}{(x+3)(x^2+4x+3)(x^2+4)}$$
(a) $\frac{A}{x+3} + \frac{B}{(x+3)^2} + \frac{C}{x+1} + \frac{Dx+E}{x^2+4}$
(b) $\frac{A}{x+3} + \frac{Bx+C}{x^2+4x+3} + \frac{Dx+E}{x^2+4}$
(c) $\frac{A}{x+3} + \frac{Bx+C}{(x+3)^2} + \frac{D}{x+1} + \frac{Ex+F}{x^2+4}$
(d) $\frac{A}{x+3} + \frac{B}{(x+3)^2} + \frac{C}{x+1} + \frac{D}{x+2} + \frac{D}{x-2}$

(e) None of these.

Integration by Partial Fractions (Exercise)

Compute
$$\int \frac{2x^2 + 5x - 5}{(x+1)(x+3)^2} dx$$
 Evaluate $\int \frac{-2x+4}{(x^2+1)(x-1)} dx$

- (d) $6 \ln 3$
- (e) None of these