Week in Review Math 152

Week 11

Alternating series
Absolute Convergence and the Ratio Test Power series

An Alternating series

[^0]
$\widehat{\mathbf{A}}$ M Alternating series

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \ln \left(1+\frac{1}{n}\right)=0 \\
& \Rightarrow \sum_{i=1}^{\infty}(-1)^{n+1} \ln \left(1+\frac{1}{n}\right) \text { converges }
\end{aligned}
$$

$\widehat{\mathbf{A}}$ M Alternating series

[^1]
$\widehat{\mathbf{A}}$ Alternating series

[^2]
ATHE Absolute Convergence

+/- terms but Not alternating
\Rightarrow Absolute convergence

An Absolute Convergence

[^3]
A Absolute Convergence

$\lim _{n \rightarrow \infty} a_{n}=0$?	No		Determine which of the converge absolutely,
Yes	Convergent Condition Yes - $\|r\|<1$ - $p>1$ - Converges - $\lim _{n \rightarrow \infty}(-1)^{n} a_{n}=0$		
Any special type series ? - Geometric series - P-series - Telescoping series - Alternating series			converge, and$\sum_{i=1}^{\infty} \frac{(-1)^{n} n^{3}}{3^{n}}$
No			
Integral test Known antiderivative ?	Convergent Condition$\int_{1}^{\infty} f(x) d x<\infty$		$\begin{aligned} & \sum_{i=1}^{\infty} \frac{(-1)^{n} \sqrt{n}}{3^{n}} \\ & \sum_{i=1}^{\infty} \frac{(-1)^{n} 3^{n}}{2^{2 n}} \end{aligned}$
No			
Long term behavior			
Comparison test $\Sigma a_{k}<\Sigma b_{k}<L$ (convergent) $\infty=\Sigma b_{k}<\Sigma a_{k}$ (divergent)	Limit Comparison test $\begin{aligned} & \lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=L \\ & \sum b_{k}<\infty: \text { convergent } \Sigma a_{k} \\ & \Sigma b_{k}=\infty \text { : divergent } \Sigma a_{k} \end{aligned}$	Ratio test $\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=\rho<1$ convergent	

[^4]
A Absolute Convergence

[^5]
A Absolute Convergence

[^6]
A Absolute Convergence

[^7]
A Absolute Convergence

[^8]
A Absolute Convergence

+/- terms but Not alternating
\Rightarrow Absolute convergence

An Absolute Convergence

[^9]
$\widehat{\mathbf{A}}$ Absolute Convergence

Which of the following series is absolutely convergent by the Ratio Test?
(I) $\sum_{n=1}^{\infty} \frac{(-1)^{n} n^{3}}{3^{n}}$
(II) $\sum_{n=1}^{\infty} \frac{n^{4}(-2)^{n}}{n!}$
(III) $\sum_{n=1}^{\infty} \frac{(-1)^{n} n}{n^{3}+4}$
(a) I and II only
(b) I only
(c) II only
(d) II and III only
(e) I, II, and III

Convergence of power series

A power series about a, or just power series, is any series that can be written in the form,

$$
S(x)=\sum_{n=1}^{\infty} c_{n}(x-a)^{n} \text { where } a, c_{n} \in \mathbb{R}
$$

- The c_{n} 's are often called the coefficients of the series.
- A power series is that it is a function of x.
- For different x, the power series may or may not converges
- There is a number R so that the power series will converge for, $|x-a|<R \mid$ and will diverge for $|x-a|>R$. This number, R is called the radius of convergence for the series
- The series may or may not converge if $|x-a|=R$
- The interval of all x^{\prime} s, including the endpoints $(|x-a|=R)$, for which the power series converges is called the interval of convergence of the series
- To find the radius of convergence, we apply ratio test for absolute convergence of the power series
- To find the interval of convergence, investigate the convergence at the endpoints $|x-a|=R$

Example: Plot the partial sums of $\sum_{n=1}^{\infty} x^{n}$

$\widehat{\mathbf{M}}$ Convergence of power series

Determine the radius of convergence and interval of convergence for the following power series.

$$
\sum_{i=1}^{\infty} \frac{(-1)^{n}(x+1)^{n}}{4^{n}}
$$

$\sum_{i=1}^{\infty} \frac{(x-1)^{n}}{n!}$

$$
\sum_{i=1}^{\infty} n!(2 x+1)^{n}
$$

Convergence of power series

Find the radius of convergence of the series $\sum_{n=0}^{\infty} \frac{(-2)^{n} x^{2}}{(n+1)!}$.
(a) 0
(b) ∞
(c) $\frac{1}{2}$
(d) 1
(e) 2

$\widehat{\mathbf{M}}$ Convergence of power series

The series $\sum_{n=1}^{\infty} c_{n}(x+1)^{n}$ converges when $x=-4$. Which of the following series is guaranteed to converge?
(I) $\sum_{n=1}^{\infty} c_{n} \cdot 0^{n}$
(II) $\sum_{n=1}^{\infty} c_{n}$
(III) $\sum_{n=1}^{\infty} c_{n} 2^{n}$
(IV) $\sum_{n=1}^{\infty} c_{n} 3^{n}$
(a) I and II only
(b) I, II, and III only
(c) II and III only
(d) II, III, and IV only
(e) I, II, III and IV

[^0]: +/- terms but Not alternating
 \Rightarrow Absolute convergence

[^1]: +/- terms but Not alternating
 \Rightarrow Absolute convergence

[^2]: +/- terms but Not alternating
 \Rightarrow Absolute convergence

[^3]: +/- terms but Not alternating
 \Rightarrow Absolute convergence

[^4]: +/- terms but Not alternating
 \Rightarrow Absolute convergence

[^5]: +/- terms but Not alternating
 \Rightarrow Absolute convergence

[^6]: +/- terms but Not alternating
 \Rightarrow Absolute convergence

[^7]: +/- terms but Not alternating
 \Rightarrow Absolute convergence

[^8]: +/- terms but Not alternating
 \Rightarrow Absolute convergence

[^9]: +/- terms but Not alternating
 \Rightarrow Absolute convergence

