MATH 308: WEEK-IN-REVIEW 8 (6.3 - 6.5)

6.1-6.6 Laplace Transform

Review

• Definition of the Laplace transform

$$\mathcal{L}{f} = \int_0^\infty e^{-st} f(t) \, dt$$

- General strategy for solving differential equations with the Laplace transform
 - 1. Laplace transform
 - 2. Solve for Y(s)
 - 3. Inverse transform

	f(t)	F(s)	defined for
• Common Laplace transforms	1	$\frac{1}{s}$	s > 0
	e^{at}	$\frac{1}{s-a}$	s > a
	$t^n (n = 1, 2, \ldots)$	$\frac{\overline{s-a}}{\frac{n!}{s^{n+1}}}$	s > 0
	$\sin(bt)$	$\frac{b}{s^2+b^2}$	s > 0
	$\cos(bt)$	$\frac{s}{s^2+b^2}$	s > 0
	$e^{at}t^n (n=1,2,\ldots)$	$\frac{n!}{(s-a)^{n+1}}$	s > a
	$e^{at}\sin(bt)$	$\frac{\dot{b}}{(s-a)^2+b^2}$	s > a
	$e^{at}\cos(bt)$	$\frac{s-a}{(s-a)^2+b^2}$	s > a
	$u_c(t)(c \ge 0)$	$\frac{e^{-cs}}{s}$	s > 0
	$\delta(t-c)(c \ge 0)$	e^{-cs}	

• Shift theorems

$$\mathcal{L}\{u_c(t)f(t-c)\} = e^{-cs}F(s)$$
$$\mathcal{L}\{u_c(t)f(t)\} = e^{-cs}\mathcal{L}\{f(t+c)\}$$
$$\mathcal{L}^{-1}\{e^{-cs}F(s)\} = u_c(t)f(t-c)$$
$$\mathcal{L}^{-1}\{F(s-c)\} = e^{ct}f(t)$$

1 6.2: Solving ODEs with Laplace Transforms

Review

- Laplace transform of derivatives
- $\mathcal{L}{f'} =$
- $\mathcal{L}{f''} =$
- $\mathcal{L}{f'''} =$
- How to solve differential equations with the Laplace transform
 - Laplace transform
 - Solve for Y(s)
 - Inverse transform

$$y'' - 3y' + 2y = 0$$
, $y(0) = -2$, $y'(0) = 1$.

$$y'' + 2y' + 5y = 0$$
, $y(0) = 1$, $y'(0) = -1$.

$$y'' + 6y' + 9y = 3e^{-t}, \quad y(0) = 1, \quad y'(0) = 0.$$

$$y''' - y' = 0$$
, $y(0) = 1$, $y'(0) = 2$, $y''(0) = -1$.

2 6.3: Step Functions

Review

- The unit step function $u_c(t)$ is defined by
- It can be used to write discontinuous functions into a single equation.
- The Laplace transform of $u_c(t)$ is
- Laplace transforms of shifts

• Inverse Laplace transform of shifts

5. Convert the following function to a piecewise function. Also, graph the function. Compute its Laplace transform.

 $f(t) = u_3(t) - 2u_5(t)$

6. Convert the following function to a piecewise function. Compute its Laplace transform.

 $f(t) = t - \cos(t - 2)u_2(t) - tu_3(t)$

7. Convert the following piecewise function into a form that involves step functions.

$$g(t) = \begin{cases} 0, & t < 2\\ 3, & 2 \le t < 5\\ \sin(3t), & t \ge 5 \end{cases}$$

8. Convert the following piecewise function into a form that involves step functions. Compute its Laplace transform.

$$g(t) = \begin{cases} 3t, & t < 5\\ e^{3t}, & t \ge 5 \end{cases}$$

9. Solve the initial value problem.

$$f'' + 4f = u_3(t), \quad f(0) = 0, \quad f'(0) = 0.$$

10. Solve the initial value problem.

$$w'' + 2w' = \begin{cases} 3, & t < 5\\ 0, & t \ge 5 \end{cases}, \quad w(0) = 0, \quad w'(0) = 0.$$

11. Consider a spring and mass system with a 5 kg mass hanging on a spring. When the mass is hung on the spring, the spring extends 50 cm. The mass experiences a damping force of 8 N when the mass is moving 2 m/s. The mass starts from equilibrium at rest, but there is an external force $\cos(t)$ that lasts for the first 3π seconds. Write down the initial value problem that describes this situation.

3 6.6: Delta Functions

Review

- The Dirac delta function $\delta(t-c)$ is defined by
- It can be used to model instantaneous impulses or point sources in differential equations.
- The Laplace transform of $\delta(t-c)$ is
- Laplace transforms involving delta functions

• Inverse Laplace transform involving delta functions

12. Find the Laplace transform of the following function:

$$f(t) = t^2 \delta(t-3) + e^t \delta(t-5).$$

13. Solve the initial value problem:

$$y'' + 2y' + y = \delta(t - 3), \quad y(0) = 1, \quad y'(0) = -1.$$

- 14. A 2 kg mass is suspended from a spring and damper. When the mass is hung at rest, it stretches the spring by 2 meters. When the mass moves at 1 m/s, the damper exerts a resistive force of 4 N. At t = 2 seconds, the system is struck with a hammer, delivering an instantaneous impulse force of magnitude 3N. The mass starts motion from equilibrium with an initial upward velocity of 0.5 m/s.
 - (a) Determine the spring constant k and damping coefficient c.
 - (b) Write the governing differential equation for the displacement u(t).
 - (c) Solve for u(t) and describe the motion of the system.

(Use $g = 10 \,\mathrm{m/s^2}$.)