Review of Sections 4.4 and 4.7

1. Find the limit.
(a) $\lim _{x \rightarrow \infty} \frac{(\ln x)^{2}}{x-1}$
(b) $\lim _{x \rightarrow 0} \frac{\sin x-x}{x^{3}}$
(c) $\lim _{x \rightarrow 1}\left(\frac{1}{\ln x}-\frac{1}{x-1}\right)$
(d) $\lim _{x \rightarrow 0^{+}} x^{2} \ln x$
(e) $\lim _{x \rightarrow \infty} \sqrt{x} e^{-x / 2}$
(f) $\lim _{x \rightarrow 0}(\sin x)^{\tan x}$
(g) $\lim _{x \rightarrow \infty}\left(\frac{2 x-3}{2 x+5}\right)^{2 x+1}$
(h) $\lim _{x \rightarrow 0^{+}}(1+\sin 3 x)^{1 / x}$
2. A farmer with 750 ft of fencing wants to enclosed a rectangular field and then divide it in four parts with a fence parallel to one of the sides of the rectangle. What is the largest possible total area of the four pens?
3. A box with a square base and open top must have a volume of $32000 \mathrm{~cm}^{3}$. Find the dimensions of the box that minimize the amount of material used.
4. A rectangular storage container with an open top is to have a volume of $10 \mathrm{~m}^{3}$. The length of its base is twice the width. Material for the base costs $\$ 10$ per square meter. Material for the sides costs $\$ 6$ per square meter. Find the cost of the cheapest such container.
5. The top and bottom margins of a poster are each 6 cm and the side margins are each 4 cm . If the area of printed material on the poster is fixed at $384 \mathrm{~cm}^{2}$, find the dimensions of the poster with the smallest area.
6. Find the dimensions of the rectangle of largest area that has its base on the x -axis and its other two vertices above the x -axis and lying on the parabola $y=6-x^{2}$.
7. Find the point on the line $6 x+y=5$ that are closest to the point $(-5,3)$.
8. Find the dimensions of the rectangle of largest area that can be inscribed in an equilateral triangle of side L if one side of the rectangle lies on the base of a triangle.
