- 1. Find the Cartesian equation of the curve.
 - (a) $x = t^2 3, y = t + 2, -3 \le t \le 3.$
 - (b) $x = \sin t, y = 1 \cos t, 0 \le t \le 2\pi$.
 - (c) $x = \sqrt{t}, y = 1 t$.
- 2. Sketch the curve given by $x = \sin(4t)$, $y = \cos(4t)$, $0 \le t \le \pi/4$ and indicate the direction of the curve that is traced on the parameter increases.
- 3. Describe the motion of the particle with position (x, y) given as $x = 2 + \sin t$, $y = 1 + \cos t$ as t varies from $\pi/2$ to π .
- 4. Set up, but do not evaluate, the integral for the length of the curve $y = t + e^{-t}$, $y = t^2 + t$, $1 \le t \le 2$.
- 5. The curve C is given by $x = 3t t^3$, $y = 3t^2$, $0 \le t \le 2$.
 - (a) Find the exact length of the curve.
 - (b) Find the area of the surface obtained by rotating the curve C about the x-axis.
 - (c) Find the area of the surface obtained by rotating the curve C about the y-axis.
- 6. Give the polar coordinates for the Cartesian point $(\sqrt{3}, -1)$. Find polar coordinates (r, θ) of the point when r > 0 and when r < 0.
- 7. Plot the point with polar coordinates $(-1, -\pi/6)$. Find Cartesian coordinates of the point.
- 8. Sketch the region given by
 - (a) $r \ge 2$
 - (b) $0 \le r < 3, \pi/2 \le \theta \le 5\pi/4$
 - (c) $1 \le r \le 3, \pi/6 \le \theta \le 3\pi/2.$
- 9. Find a Cartesian equation of the curve.
 - (a) $r^2 = 5$
 - (b) $r = 4 \sec \theta$
 - (c) $r = 4\cos\theta$
 - (d) $r^2 \sin(2\theta) = 1$

10. Find a polar equation for the curve

(a) y = x(b) $x^2 + y^2 = 4y$ (c) $4y^2 = x$

11. Sketch the curve with the given polar equation.

(a) $r = -2\sin\theta$ (b) $r = 1 + \sin\theta$ (c) $r = 1 + 2\cos\theta$ (d) $r = 3\sin(3\theta)$ (e) $r = 2\cos(2\theta)$ (f) $r^2 = 9\sin(2\theta)$.