## 1 Week 12 HOGU: 5.5-5.8, Exam 3 Review

Problem 1. What is the domain of the piecewise function given below? Write your answer in interval notation.

$$
f(x)= \begin{cases}\frac{1}{\sqrt{4-2 x}} & \text { if } x \leq 3 \\ x^{2}-4 & \text { if } 4<x<6 \\ \frac{8}{x-8} & \text { if } x>7\end{cases}
$$

Problem 2. Write the equivalent piecewise-defined function for

$$
k(x)=|2 x-1| .
$$

Problem 3. Your electric bill came in! On your bill you noticed that you were charged $\$ 7$ as a base fee, plus $\$ 6$ per kilowatt-hour of electricity used up to the first 100 kilowatt-hours. (These numbers were taken from my own electric bill!) After using 100 kilowatt-hours, you notice that the amount you are charged goes up to $\$ 9$ per kilowatt-hour. Construct the piecewise function describing the cost $C(x)$, in dollars, that you pay when using $x$ kilowatt-hours of electricity.

Problem 4. Find the domain of the following functions:
(a) $4 e^{x-1}$
(b) $\ln (1-x)$
(c) $\frac{\sqrt{x^{3}-8}}{\ln (x)}$

Problem 5. (a) Completely simplify this expression to be in base 6 :

$$
\frac{36^{x^{2}}}{6^{-4 x}}
$$

(b) Fully expand the expression using the properties of logarithms:

$$
\ln \left(\sqrt[3]{\frac{x^{3}}{e^{2} z^{4}}}\right)
$$

Problem 6. Solve the following equations for $x$ :
(a) $4^{x+1}=64$
(b) $\ln (x)+\ln (x-2)=\ln (x+10)$
(c) $2 \cdot 3^{-x}=16$

Problem 7. The amount in a savings account, compounded annual, is computed by $A=P(1+r)^{t}$, where $A$ is the accumulated amount, $P$ is the amount of the original deposit, $r$ is the annual interest rate (in decimal form) and $t$ is time since deposit, in years.

If you deposit $\$ 12,000$ in this savings account and the interest rate on the account is $7 \%$, how long would it take the savings account to grow to $\$ 25,000$ ?

Problem 8. Consider the function $f(x)$ below:

(a) State the domain of $f(x)$. Write your answer in interval notation.
(b) State the range of $f(x)$. Write your answer in interval notation.

Problem 9. Multiply the following rational expressions and completely simplify:

$$
\left(\frac{m^{2}-9}{3 m-15}\right) \cdot\left(\frac{m^{2}-m-20}{m^{2}+3 m}\right)
$$

Problem 10. Subtract the following rational expressions and completely simplify:

$$
\frac{9}{4 x-10}-\frac{9}{10 x-25}
$$

Problem 11. Compute and completely simplify the difference quotient for the function $g(x)=-\frac{3}{x+1}$.
(a) $g(x+h)=$
(b) $g(x+h)-g(x)=$
(c) $\frac{g(x+h)-g(x)}{h}=$

Problem 12. Compute and completely simplify the difference quotient for the function $k(x)=\sqrt{2 x-5}$.
(a) $k(x+h)=$
(b) $k(x+h)-k(x)=$
(c) $\frac{k(x+h)-k(x)}{h}=$

