

Math 151 - Week-In-Review 1

V. Coffelt

Topics for the week:

- 1.5 Inverse Trigonometric Functions
- J.1 Vectors

1.5 Inverse Trigonometric Functions

1. State the domain and range of $f(x) = \arcsin(x)$, $g(x) = \arccos(x)$, and $h(x) = \arctan(x)$.

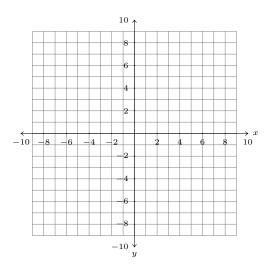
2. Compute the exact value of each expression.

(a)
$$\arcsin(-1)$$

(b)
$$\arccos\left(\frac{\sqrt{3}}{2}\right)$$

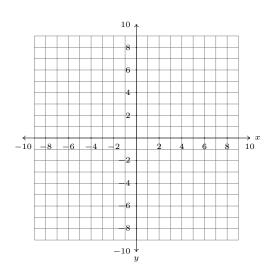
(c) $\arctan\left(\sqrt{3}\right)$
(d) $\sin^{-1}\left(\frac{\sqrt{2}}{2}\right)$
(e) $\cos^{-1}\left(-\frac{1}{2}\right)$
(f) $\tan^{-1}(0)$

- 3. Simplify each expression.
 - (a) $\arctan(\cos(\pi))$


(b)
$$\sec\left(\sin^{-1}\left(\frac{8}{13}\right)\right)$$

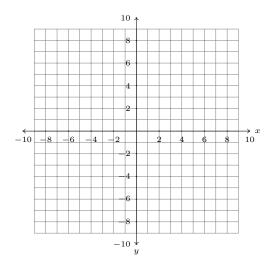
(c)
$$\csc\left(\arctan\left(\frac{x}{4}\right)\right)$$

(d) $\sin(\cos^{-1}(3x))$


J.1 Vectors

4. Compute a vector, \mathbf{v} , which is given by the directed line segment \overrightarrow{PQ} with points P = (-3, 5)and Q = (-1, -9). Then sketch both the directed line segment \overrightarrow{PQ} and vector, \mathbf{v} .

5. Compute a vector, \mathbf{w} , which is given by the directed line segment \overrightarrow{BA} with points $A = \left(\frac{1}{2}, 0\right)$ and $B = \left(\frac{7}{2}, \frac{7}{2}\right)$. Then sketch both the directed line segment \overrightarrow{BA} and vector, \mathbf{w} .



- 6. Given vectors $\vec{u} = \langle 3, -4 \rangle$, $\vec{v} = \langle 6, 11 \rangle$, and $\vec{w} = \left\langle -\frac{2}{5}, -\frac{3}{2} \right\rangle$, compute each of the following. (a) The magnitude of \vec{u} .

 - (b) The length of \vec{w} .
 - (c) $\vec{v} \vec{u}$
 - (d) $8\vec{w}$
 - (e) $6\vec{u} + 9\vec{v}$

(f)
$$-\frac{1}{2}\vec{u} + 4\vec{w} - \frac{2}{5}\vec{v}$$

7. Using a graph, show $\langle -2, -3 \rangle + \langle 0, 8 \rangle$ has the same resultant vector as $\langle 0, 8 \rangle + \langle -2, -3 \rangle$.

- 8. Given vectors $\mathbf{u} = \mathbf{i} + 3\mathbf{j}$, $\mathbf{v} = -2\mathbf{i}$, and $\mathbf{w} = \langle -7, 8 \rangle$, compute each of the following and write your final answer using the standard basic vectors, if appropriate.
 - (a) Write **w** using standard basic vectors **ij**.

(b) |**u**|

(c) $\mathbf{u} - 2\mathbf{w}$

(d) $|\mathbf{u} + 3\mathbf{v}|$

- 9. Given $\mathbf{a} = -\mathbf{i} + 5\mathbf{j}$,
 - (a) Compute a unit vector that has the same direction as **a**.

(b) Compute a vector that has the same direction as \vec{a} and has a length of $\frac{1}{4}$.

(c) Compute a vector that is parallel to **a** with a length 5.

10. Write the component form of vector, \vec{v} , whose initial point is the origin of the two dimensional Cartesian Plane and makes an angle of $\frac{7\pi}{6}$ with the positive x-axis. The magnitude of \vec{v} is 5.

11. Two chains have been attached to a chunk of concrete buried in the ground and then each attached to a different backhoe. If the backhoes drive in opposite directions from the concrete with one of the chains creating a 30° angle with the ground and having a magnitude of 120 lbs, while the other creates a 45° angle with the ground and has a magnitude of 100 lbs. What is the resultant force **F** acting on the chunk of concrete? Then compute the magnitude and direction of the force.

12. The wind is blowing at a speed of 18 mph in the direction S45°W. A red tailed hawk is flying N60°W at an airspeed of 100 mph. Determine the true course and ground speed of the hawk.

Trigonometric Identity Reminders

13. State the three Pythagorean Identities

14. State the Reciprocal Identities