Sections 2.6, 2.7, 2.8

1. Find the limit.

(a)
$$\lim_{x \to \infty} \frac{x^2 - 5x + 1}{3x + 7}$$

(b)
$$\lim_{x \to \infty} \frac{x^2 + x - 4}{x^3 - 2x + 1}$$

(c)
$$\lim_{x \to -\infty} \frac{2x^3 + 3x^2 - 3x + 7}{x^3 - 16x + 5}$$

(d)
$$\lim_{x \to \infty} \left(\sqrt{x^2 + x - 1} - \sqrt{x^2 - x}\right)$$

(e)
$$\lim_{x \to -\infty} \left(x + \sqrt{x^2 + 2x}\right)$$

2. Find the vertical and horizontal asymptotes (if any) for the function $f(x) = \frac{x^2 - 2x - 8}{x^2 - x - 6}$.

- 3. Find f'(x) by using the definition of derivative if
 - (a) $f(x) = (3-x)^2$ (b) $f(x) = \sqrt{x-2}$ (c) $f(x) = \frac{1}{x+1}$
- 4. Let f(x) = x|x|
 - (a) For what values of x is f differentiable?
 - (b) Find a formula for f'.
- 5. At what point on the curve $y = x^{3/2}$ is the tangent line parallel to the line 3x y + 6 = 0.
- 6. The displacement of an object moving in a straight line is given by $s(t) = 1 + 2t + t^2/4$ (t is in seconds). Find the velocity of the object when t = 1.

Review for Midterm 1.

- 1. Two forces \mathbf{F}_1 and \mathbf{F}_2 act on an object. The force \mathbf{F}_1 has a magnitude of 16 lbs and a direction of 135° counterclockwise from the positive x-axis, and \mathbf{F}_2 has a magnitude of 60 lbs and a direction of 30° counterclockwise from the positive x-axis.
 - (a) Find the resultant force **F**.
 - (b) Find the resultant angle θ as measured counterclockwise from the positive x-axis.
- 2. A constant force $\mathbf{F} = 5\mathbf{i} + 6\mathbf{j}$ moves an object along a straight line from the point (-1,2) to the point (2,3). Find the work done by the force \mathbf{F} .
- 3. Find the scalar and vector projections of the vector $2\mathbf{i} 3\mathbf{j}$ onto the vector $\mathbf{i} + 6\mathbf{j}$.
- 4. Find the vector, parametric, and the Cartesian equations for the line passing through the points A(1, -3) and B(2, 1).
- 5. Find the distance between the parallel lines y = 2x + 3 and y 2x = 9.
- 6. Given the parametric curve $x(t) = 1 + \cos t$, $y(t) = 1 \sin^2 t$.

- (a) Find a Cartesian equation for this curve.
- (b) Does the parametric curve go through the point (1,0)? If yes, give the value(s) of t.
- (c) Sketch the graph of the parametric curve on the interval $0 \le t \le \pi$, include the direction of the path.
- 7. Express $\tan(\arcsin(x))$ without using trig or inverse trig functions.
- 8. Evaluate the limit (do no use the L'Hospital's Rule):

(a)
$$\lim_{x \to 5} \frac{x^2 - 5x + 10}{x^2 - 25}$$

(b)
$$\lim_{x \to 7} \frac{2 - \sqrt{x - 3}}{x^2 - 49}$$

(c)
$$\lim_{x \to -2} \frac{x^2 - 4}{|x + 2|}$$

(d)
$$\lim_{x \to 0} \left(\frac{1}{x\sqrt{x + 1}} - \frac{1}{x}\right)$$

9. Find and classify all points of discontinuity for the function

$$f(x) = \begin{cases} x^2 + 1 & , & \text{if } x < 2, \\ x + 2 & , & \text{if } x \ge 2. \end{cases}$$

- 10. Find the vertical and horizontal asymptotes of the curve $y = \frac{x^2 + 4}{3x^2 3}$.
- 11. Use the Intermediate Value Theorem to show that there is a root of the equation $x^3 3x + 1 = 0$ in the interval (1,2).