Sections 2.6, 2.7, 2.8

1. Find the limit.
(a) $\lim _{x \rightarrow \infty} \frac{x^{2}-5 x+1}{3 x+7}$
(b) $\lim _{x \rightarrow \infty} \frac{x^{2}+x-4}{x^{3}-2 x+1}$
(c) $\lim _{x \rightarrow-\infty} \frac{2 x^{3}+3 x^{2}-3 x+7}{x^{3}-16 x+5}$
(d) $\lim _{x \rightarrow \infty}\left(\sqrt{x^{2}+x-1}-\sqrt{x^{2}-x}\right)$
(e) $\lim _{x \rightarrow-\infty}\left(x+\sqrt{x^{2}+2 x}\right)$
2. Find the vertical and horizontal asymptotes (if any) for the function $f(x)=\frac{x^{2}-2 x-8}{x^{2}-x-6}$.
3. Find $f^{\prime}(x)$ by using the definition of derivative if
(a) $f(x)=(3-x)^{2}$
(b) $f(x)=\sqrt{x-2}$
(c) $f(x)=\frac{1}{x+1}$
4. Let $f(x)=x|x|$
(a) For what values of x is f differentiable?
(b) Find a formula for f^{\prime}.
5. At what point on the curve $y=x^{3 / 2}$ is the tangent line parallel to the line $3 x-y+6=0$.
6. The displacement of an object moving in a straight line is given by $s(t)=1+2 t+t^{2} / 4(t$ is in seconds). Find the velocity of the object when $t=1$.

Review for Midterm 1.

1. Two forces \mathbf{F}_{1} and \mathbf{F}_{2} act on an object. The force \mathbf{F}_{1} has a magnitude of 16 lbs and a direction of 135° counterclockwise from the positive x-axis, and \mathbf{F}_{2} has a magnitude of 60 lbs and a direction of 30° counterclockwise from the positive x-axis.
(a) Find the resultant force \mathbf{F}.
(b) Find the resultant angle θ as measured counterclockwise from the positive x-axis.
2. A constant force $\mathbf{F}=5 \mathbf{i}+6 \mathbf{j}$ moves an object along a straight line from the point $(-1,2)$ to the point $(2,3)$. Find the work done by the force \mathbf{F}.
3. Find the scalar and vector projections of the vector $2 \mathbf{i}-3 \mathbf{j}$ onto the vector $\mathbf{i}+6 \mathbf{j}$.
4. Find the vector, parametric, and the Cartesian equations for the line passing through the points $A(1,-3)$ and $B(2,1)$.
5. Find the distance between the parallel lines $y=2 x+3$ and $y-2 x=9$.
6. Given the parametric curve $x(t)=1+\cos t, y(t)=1-\sin ^{2} t$.
(a) Find a Cartesian equation for this curve.
(b) Does the parametric curve go through the point $(1,0)$? If yes, give the value(s) of t.
(c) Sketch the graph of the parametric curve on the interval $0 \leq t \leq \pi$, include the direction of the path.
7. Express $\tan (\arcsin (x))$ without using trig or inverse trig functions.
8. Evaluate the limit (do no use the L'Hospital's Rule):
(a) $\lim _{x \rightarrow 5} \frac{x^{2}-5 x+10}{x^{2}-25}$
(b) $\lim _{x \rightarrow 7} \frac{2-\sqrt{x-3}}{x^{2}-49}$
(c) $\lim _{x \rightarrow-2} \frac{x^{2}-4}{|x+2|}$
(d) $\lim _{x \rightarrow 0}\left(\frac{1}{x \sqrt{x+1}}-\frac{1}{x}\right)$
9. Find and classify all points of discontinuity for the function

$$
f(x)= \begin{cases}x^{2}+1 & , \text { if } x<2 \\ x+2 & , \text { if } x \geq 2\end{cases}
$$

10. Find the vertical and horizontal asymptotes of the curve $y=\frac{x^{2}+4}{3 x^{2}-3}$.
11. Use the Intermediate Value Theorem to show that there is a root of the equation $x^{3}-3 x+1=0$ in the interval $(1,2)$.
