1. Find the derivative.
(a) $f(x)=\frac{e^{\sqrt{x}}}{x+\sqrt{x}}$
(b) $f(x)=\tan ^{3}\left(e^{-x}+e x-x^{e}\right)$
(c) $f(x)=\log \left(x^{2}-x\right)$
(d) $f(x)=3^{\sin x}$
(e) $f(x)=x \sqrt{\ln x}$
(f) $f(x)=\ln (\ln (3 x+1))$
(g) $f(x)=\ln \left|\frac{x^{2}-4}{2 x+5}\right|$
(h) $y=x^{\ln x}$
(i) $y=(\sin x)^{\cos x}$
(j) $y=\arctan (2 x+1)$
(k) $y=\sqrt{x} \arcsin \left(x^{3}\right)$
(1) $y=(\arccos (4-2 x))^{5}$
2. Use logarithmic differentiation to find the following derivatives.
(a) $f(x)=\left(\frac{x^{3}+3 x}{x^{2}-4 x+1}\right)^{5 / 2}$
(b) $y=\frac{(x+1)^{151}(5-\sin x)^{3}}{(3 x-7)^{2024}}$
(c) $y=\frac{e^{x} \sqrt{x^{2}+2}}{\sqrt[3]{x}}$
3. Find $y^{\prime \prime}$ for the function $f(x)=\left(1+x^{2}\right) \tan x$.
4. Find $f^{(58)}(x)$ if $f(x)=e^{-2 x}+\cos (3 x)$.
5. The vector function $\mathbf{r}(t)=<t+e^{4 t},-t \cos (2 t)>, 0 \leq t \leq 2 \pi$, represents the position of a particle at time t. Find the velocity acceleration vectors of the object at $t=\frac{\pi}{4}$.
6. Consider the curve $x=t^{2}-10 t-3, y=5 t^{2}+t$.
(a) Find the equation of the tangent line at the point $(8,4)$.
(b) At what point(s) is the tangent line to the graph parallel to the line $7 x+2 y=19$.
7. At what point(s) does the curve parametrized by $x=t^{2}-6 t+5, y=t^{2}+4 t+3$ have a horizontal or vertical tangent?
8. Find the point(s) on the curve $x=1-2 \cos t, y=2+3 \sin t$ where the tangent is horizontal or vertical.
9. Find the vector and parametric equations for the line tangent to the curve $\mathbf{r}(t)=<1-4 t, 2 t-3 t^{2}>$ at the point $P(-11,-21)$.
10. The ball is tossed into the air. Its position at time t is given by $\mathbf{r}(t)=<5 t, 100 t-16 t^{2}>$.
(a) Find the velocity and the speed of the ball when $t=2$.
(b) How high does the ball go?
(c) With what speed does the ball hit the ground?
11. If $\mathbf{r}(t)=<t^{3}, t^{2}>$ represents the position of a particle at time t, find the angle between the velocity and the acceleration vector at time $t=1$.
12. A stone is dropped into a lake, creating a circular ripple that travels outward at a speed of $60 \mathrm{~cm} / \mathrm{s}$. Find the rate at which the area within the circle is increasing after 5 sec .
13. If a ball is thrown vertically upward with a velocity of $144 \mathrm{ft} / \mathrm{s}$, then its height after t seconds is $s=$ $144 t-16 t^{2}$.
(a) What is the maximum height reached by the ball?
(b) What is the velocity of the ball when it is 320 ft above the ground on his way up?
(c) What is the velocity of the ball when it is 320 ft above the ground on his way down?
(d) When will the ball hit the ground?
(e) With what velocity does the ball hit the ground?
