MATH 308: WEEK-IN-REVIEW 3

- 1. Determine (without solving the problem) an interval in which the solution of the following initial value problem is certain to exist. $y' + \rho(x)y = g(x) \Rightarrow$ solution exists where
 - (a) $p(x) = \sec(x) = \frac{1}{\cos(x)} \quad y' + (\sec x)y = x^2, \quad y(0) = 5$ $p(x) = \sec(x) = \frac{1}{\cos(x)} \quad y' + (\sec x)y = x^2, \quad y(0) = 5$ $g(x) = x^2 \rightarrow$ continuous everywhere Domain: $\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$ $\frac{3\pi}{2} - \frac{\pi}{2} \qquad x = 0 \qquad \pi$ <u>3</u>π Ζ (b) $p(t) = \frac{t}{t^2 - q}$ $y' + \frac{t}{t^2 - 9}y = \frac{1}{t}, \quad y(-1) = 2$ $discontinuous at \quad g(t) = \frac{1}{t}$ t = 0 $discontinuous at \quad g(t) = \frac{1}{t}$ $discontinuous at \quad g(t) = \frac{1}{t}$ $\xrightarrow{-3} \xrightarrow{t=-1} 0 \qquad 3$ e) $g' + \frac{2t}{\sin(t)}g = \frac{\ln(2+t)}{\sin(t)}g = \ln(2+t), \quad g(\pi/2) = 3.$ (c)
 - $g' + \frac{2t}{\sin(t)} g = \frac{\ln(2+t)}{\sin(t)}$ $P(t) = \frac{2t}{\sin(t)} \quad \text{discontinuous at}$ $P(t) = \frac{2t}{\sin(t)} \quad \text{multiples of } \pi$ $0, \pm \pi, \pm 2\pi, \dots$ $Domain: (0, \pi)$

2. (a) Consider the differential equation

Math Learning Center

TEXAS A&M UNIVERSITY

ĀŇ

$$y' = (2t+y)^{\frac{2}{3}}.$$

If the initial condition is y(0) = 1, does the IVP have a unique solution? What if the initial condition is y(1) = -2?

(a) The Existence & Uniqueness Theorem (EUT)
IF (a)
$$f(try) \notin \frac{2f}{3}(try)$$
 are continuous at (try)
then there exists a unique solution to $y'(t) = f(try)$,
 $y(tr) = y_0$.
 $y(tr) = 1$: * $f(try) = (2t+y)^{3} \Rightarrow f(0,1) = (2.0+1) = 1 \checkmark cts$
* $\frac{2f}{3}(try) = \frac{2}{3}(2t+y)^{1/3}$
 $= \frac{2}{3}(2t+y)^{3} \Rightarrow \frac{2f}{3}(0,1) = \frac{2}{3(2.0+1)^{3}} = \frac{2}{3} \checkmark cts$
 $EUT \Rightarrow y' = (2t+y)^{3}, y(0) = 1$ has a unique solution
 $y(1) = -2$: * $f(1,-2) = (2.1+(-2))^{2} = \frac{2}{3\cdot 0} \checkmark$ undefined
 $y' = (2t+y)^{3}, y(1) = -2$ is not guaranteed to have a unique solution
Passing through $(1, -2)$ in the try plane.

TEXAS A&M UNIVERSITY Math Learning Center

A M

(b) Consider the initial value problem $y' = \sin(2t)y^{\frac{1}{3}}$, y(0) = 0. One solution is y(t) = 0. Find two other solutions to the initial value problem. Why does the Existence and Uniqueness Theorem not apply to this case? y(t) = 0 is one solution. Find others.

7 separable

$$y \neq 0:$$

$$\int \frac{1}{y} \frac{1}{3} dy = \int \sin(2t) dt$$

$$\frac{3}{2} \frac{2}{3} = -\frac{1}{2} \cos(2t) + C \qquad y(0) = 0 \Rightarrow C = \frac{1}{2}$$

$$\frac{3}{2} \frac{2}{3} = -\frac{1}{2} \cos(2t) + \frac{1}{2} = \frac{1}{2} \left(1 - \cos(2t)\right)$$

$$\frac{3}{2} \frac{2}{3} = -\frac{1}{2} \cos(2t) + \frac{1}{2} = \frac{1}{2} \left(1 - \cos(2t)\right)$$

$$\sin^{2}(t)$$

$$y^{2/3} = \frac{2}{3} \sin^{2}(t)$$

$$y^{2} = \left(\frac{2}{3} \sin^{2}(t)\right)^{3}$$

$$y = \pm \sqrt{\left(\frac{2}{3} \sin^{2}(t)\right)^{3}} = \pm \sqrt{\frac{8}{27}} \sin^{3}(t)$$

 $f(t,y) = \sin(2t)y'^{3} \Rightarrow f(0,0) = \sin(2.0) = 0 \lor \text{ continuous}$ $\frac{2f}{2y} = \frac{\sin(2t)}{3y^{2}} \Rightarrow \frac{2f}{0}(0,0) = \frac{\sin(2.0)}{3.0^{23}} \times \text{ undefined}$

Therefore EUT does not apply to this case

TEXAS A&M UNIVERSITY Math Learning Center

3. Solve the following initial value problems and determine how the interval in which the solution exists Equilibrium solns: y=0. If y=0, the solution y(t)=0 exists for all t values depends on y_0 . (a) $y' = y^2$, $y(0) = y_0$ $y_{y} \neq 0$: $\int_{y^2}^{1} dy = \int 1 dt$ $\Rightarrow -\overline{y}' = t + c \Rightarrow -\frac{1}{y} = t + c \Rightarrow -\frac{1}{y} = c \Rightarrow \frac{1}{y} = \frac{1}{y_0} - t \Rightarrow y = \frac{1}{1 - ty_0}$ Case 1: y > 0: vertical asymptote at $t = \frac{1}{y} > 0$ Domain of solution: $(-\infty, \frac{1}{y})$ Case 2: $y_0 < 0$: vertical asymptote at $t = \frac{1}{y_0} < 0$ Domain of solution: (1,00) (b) $y' = -\frac{4t}{y}$, $y(0) = y_0$ * $y \neq 0 \Rightarrow y(0) = 0$ has no solves $\underline{y \neq 0}$: $\int y dy = -4 \int t dt$ $y_{1}^{2} = -\frac{4}{2}t_{1}^{2} + C_{1} \Rightarrow y_{1}^{2} = -4t_{1}^{2} + 2C_{1}^{2} = -4t_{1}^{2} + C_{1}^{2}, y(o) = y_{1}^{2} \Rightarrow y_{0}^{2} = C$ $y^{2} + 4t^{2} = y^{2} \Rightarrow y^{2} = y^{2} - 4t^{2} \Rightarrow y = \frac{t}{\sqrt{y^{2} - 4t^{2}}}$ $y_{0}^{2} - 4t^{2} > 0 \le \frac{\text{strict!}}{y \neq 0}$ $t^2 \langle y_0^2 \rangle$ $|t| < |y_0|$

- 4. Determine if the following equations are autonomous or not.
 - (a) f''(x) 3f(x)f'(x) + 4 = 0 f'' - 3ff' + 4 = 0Autonomous
- 5 the independent variable does not appear explicitly ⇒ the form of the equation does not change with the independent variable

(b)
$$\frac{q''(x)}{x^2+1} - q(x)^{3/2} = 4\cos(x)$$

 $\frac{q''(x)}{x^2+1} - \frac{q^{3/2}}{x^2} = 4\cos(x)$

non-autonomous

(c)
$$y'' + y' + y = 0$$

autonomous

(d)
$$\frac{g''}{g^2} + g = \sqrt{g}$$

(e)
$$\frac{d^2y}{dx^2} + 3(x^2 - 1)y - x = 5\sin(2x)$$

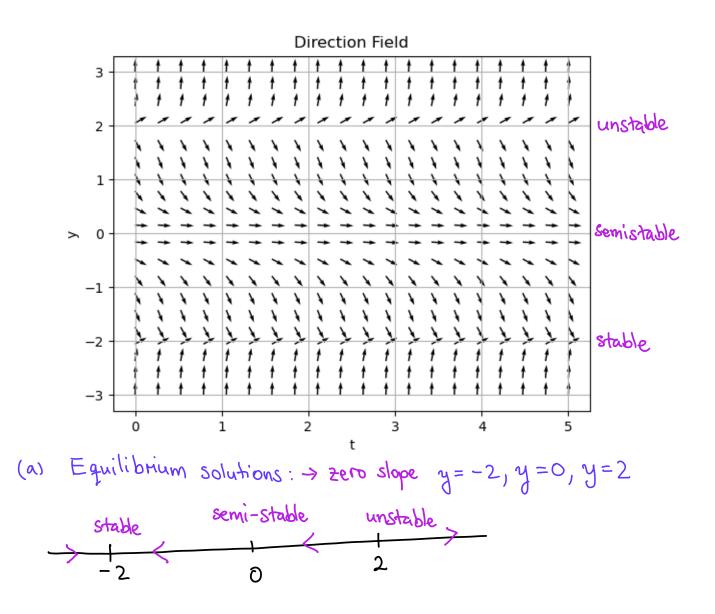
 $y'' + 3(x^2 - 1)y - x = 5\sin(2x)$
non-autonomous

(f)
$$\sin(u^3) + \frac{d^3u}{dx^3} = 0$$

 $\sin(u^3) + u'' = 0$

autonomous

5. Given the following slopefield, determine the equilibrium solutions and their stability. Also, draw the phaseline diagram.



- 6. Given the differential equation
- $y' = (1+y)(y-2)^2 = f(y)$
- (a) Find the equilibrium solutions.
- (b) Graph the phase line. Classify each equilibrium solution as either stable, unstable, or semistable
- (c) Graph some solutions
- (d) If y(t) is the solution of the equation satisfying the initial condition $y(0) = y_0$ for some $y_0 \in (-\infty, \infty)$, find the limit of y(t) as $t \to \infty$

(a)
$$f(y) = (1+y)(y-2)^2 = 0 \iff y = -1, y = 2$$

(b) unstable semistable
 $y=-($ $y = 2$
(c) $y = (1 + y)(y-2)^2 = 0 \iff y(0) > 2$
 $y = -($ $y = 2$
(c) $y = (1 + y)(y) = 0 = y(0) > 2$
 $y = -($ $y = 2$
 $y = -($ $y = 2$
 $y = -($ $y = -(1 + y)(0) = 2$
 $y = -(1 + y)(0) = -(1 + y)(0$

7. Suppose that the population of rabbits obeys the logistic equation

$$\frac{dP}{dt} = 0.1P\left(1 - \frac{P}{1000}\right). \quad \text{* logistic growth} \\ \text{* carrying capacity} = 1000$$

Initially there are P(0) = 100 rabbits.

- (a) Solve the differential equation to find the population P(t) as a function of time.
- (b) Find the time it takes for the population to reach 90% of the carrying capacity.

(a) Equilibrium solns:
$$P = 0, P = 1000$$
. But $P(0) = 100 \le \text{ not an eq. soln}$
(b) Separation of variables: $\frac{1}{P(1 - \frac{P}{1000})} dP = 0.1 dt$
 $\int \frac{1}{P(1 - \frac{P}{1000})} dP = \int 0.1 dt = 0.1t + C = \frac{t}{10} + C$
* partial fractions * $\frac{1}{P(1 - \frac{P}{1000})} = \frac{A}{P} + \frac{B}{1 - \frac{P}{1000}} \Rightarrow 1 = A(1 - \frac{P}{1000}) + BP$
 $P = 0: \Rightarrow A = 1$
 $P = 1000: \Rightarrow B = \frac{1}{1000}$
 $\int \frac{1}{P(1 - \frac{P}{1000})} dP = \int \frac{1}{P} dP + \int \frac{1}{1000 - P} dP = \ln |P| - \ln |1000 - P| = \ln |\frac{P}{1000 - P}| = \frac{t}{10} + C$
 $\int \frac{P}{1000 - P}| = \frac{c}{e} \cdot \frac{t}{e^{10}} \Rightarrow \frac{P}{1000 - P} = \frac{t}{e} \cdot \frac{c}{e^{10}} = C \cdot \frac{t}{e^{10}} \cdot Find C \cdot P(0) = 100$
 $\frac{100}{1000 - 100} = C \Rightarrow C = \frac{100}{900} = \frac{1}{4} \Rightarrow P = \frac{1}{4} \frac{t}{e^{100}} (1000 - P) \Rightarrow P(1 + \frac{1}{4}e^{\frac{1}{100}}) = \frac{1000}{4}e^{\frac{1}{1000}} \frac{e^{\frac{1}{1000}}}{1 + \frac{1}{4}e^{\frac{1}{1000}}} = \frac{1000}{4e^{\frac{1}{1000}}} = \frac{1000}{4e^{\frac{1}{1000}}} = \frac{1000}{4e^{\frac{1}{1000}}}$

(c) Solve: $900 = \frac{1000}{9e^{\frac{1}{10}}+1} \Rightarrow \frac{9}{10} = \frac{1}{9e^{\frac{1}{10}}+1} \Rightarrow 9e^{\frac{1}{10}+1} = 9e^{\frac{1}{10}} = 9e^{\frac{1}{10}+1} = 9e^{\frac{1}{10}+1} = 9e^{\frac{1}{10}+1} = 9e^{\frac{1}{10}+1} = 9e^{\frac{1}{10}+1} = 1e^{\frac{1}{10}+1} = 1e^{\frac$

TEXAS A&M UNIVERSITY Math Learning Center

A M

8. (a) Show that the equation is exact and find the general solution

1. Check for exactness:

$$\begin{array}{l}
M \\
(2x \sin y + y^{3}e^{x}) + (x^{2} \cos y + 3y^{2}e^{x}) \frac{dy}{dx} = 0. \\
\begin{array}{l}
M \\
(2x \sin y + y^{3}e^{x}) + (x^{2} \cos y + 3y^{2}e^{x}) \frac{dy}{dx} = 0. \\
\hline
\frac{2x \sin y + y^{3}e^{x}}{\partial y} = 2x \cos y + 3y^{2}e^{x} \\
\hline
\frac{2x \cos y + 3y^{2}e^{x}}{\partial x} \\
\hline
\frac{2x \cos y + 3y^{2}e^{x}}{\partial y} = 0. \\
\hline
\frac{2x \cos y + 3y^{2}e^{x}}{\partial x} \\
\hline
\frac{2x \cos y + 3y^{2}e^{x}}{\partial y} \\
\hline
\frac{2x \cos y + 3y^{2}e^{x} + h'(y)}{\partial y} \\
\hline
\frac{2x \cos y + 3y^{2}e^{x} + h'(y)}{\partial y} \\
\hline
\frac{2x \cos y + 3y^{2}e^{x} + h'(y)}{\partial y} \\
\hline
\frac{2x \cos y + 3y^{2}e^{x} + h'(y)}{\partial y} \\
\hline
\frac{2x \cos y + 3y^{2}e^{x} + h'(y)}{\partial y} \\
\hline
\frac{2x \cos y + 3y^{2}e^{x} + h'(y)}{\partial y} \\
\hline
\frac{2x \cos y + 3y^{2}e^{x} + h'(y)}{\partial y} \\
\hline
\frac{2x \cos y + 3y^{2}e^{x} + h'(y)}{\partial y} \\
\hline
\frac{2x \cos y + 3y^{2}e^{x} + h'(y)}{\partial y} \\
\hline
\frac{2x \cos y + 3y^{2}e^{x} + h'(y)}{\partial y} \\
\hline
\frac{2x \cos y + 3y^{2}e^{x} + h'(y)}{\partial y} \\
\hline
\frac{2x \cos y + 3y^{2}e^{x} + h'(y)}{\partial y} \\
\hline
\frac{2x \cos y + 3y^{2}e^{x} + h'(y)}{\partial y} \\
\hline
\frac{2x \cos y + 3y^{2}e^{x} + h'(y)}{\partial y} \\
\hline
\frac{2x \cos y + 3y^{2}e^{x} + h'(y)}{\partial y} \\
\hline
\frac{2x \cos y + 3y^{2}e^{x} + h'(y)}{\partial y} \\
\hline
\frac{2x \cos y + 3y^{2}e^{x} + h'(y)}{\partial y} \\
\hline
\frac{2x \cos y + 3y^{2}e^{x} + h'(y)}{\partial y} \\
\hline
\frac{2x \cos y + 3y^{2}e^{x} + h'(y)}{\partial y} \\
\hline
\frac{2x \cos y + 3y^{2}e^{x} + h'(y)}{\partial y} \\
\hline
\frac{2x \cos y + 3y^{2}e^{x} + h'(y)}{\partial y} \\
\hline
\frac{2x \cos y + 3y^{2}e^{x} + h'(y)}{\partial y} \\
\hline
\frac{2x \cos y + 3y^{2}e^{x} + h'(y)}{\partial y} \\
\hline
\frac{2x \cos y + 3y^{2}e^{x} + h'(y)}{\partial y} \\
\hline
\frac{2x \cos y + 3y^{2}e^{x} + h'(y)}{\partial y} \\
\hline
\frac{2x \cos y + 3y^{2}e^{x} + h'(y)}{\partial y} \\
\hline
\frac{2x \cos y + 3y^{2}e^{x} + h'(y)}{\partial y} \\
\hline
\frac{2x \cos y + 3y^{2}e^{x} + h'(y)}{\partial y} \\
\hline
\frac{2x \cos y + 3y^{2}e^{x} + h'(y)}{\partial y} \\
\hline
\frac{2x \cos y + 3y^{2}e^{x} + h'(y)}{\partial y} \\
\hline
\frac{2x \cos y + 3y^{2}e^{x} + h'(y)}{\partial y} \\
\hline
\frac{2x \cos y + 3y^{2}e^{x} + h'(y)}{\partial y} \\
\hline
\frac{2x \cos y + 3y^{2}e^{x} + h'(y)}{\partial y} \\
\hline
\frac{2x \cos y + 3y^{2}e^{x}$$

(b) Show that the equation is exact and find the solution to the initial value problem

$$\begin{array}{c} (2t\cos y + 3t^{2}y) + (t^{3} - t^{2}\sin y - y)\frac{dy}{dt} = 0, \quad y(0) = 2. \\ 1 \text{ Check for exactness} : \frac{\partial M}{\partial y} = -2t \sinh y + 3t^{2} / \frac{\partial N}{\partial t} = 8t^{2} - 2t \sinh y \\ 2 \text{ . Set } \frac{\partial F}{\partial t} = M = 2t \cos y + 3t^{2}y \quad \text{and } \frac{\partial F}{\partial y} = N = t^{3} - t^{2} \sin y - y \\ 3 \text{ . Find } F(x_{1}y): F(t_{1}y) = \int (t^{3} - t^{2} \sin y - y) dy = \frac{t^{3}y + t^{2} \cos y - y^{2} + h(t)}{2t} \\ \frac{\partial F}{\partial t} = 3t^{2}y + 2t \cos y + h'(t) \\ F(t_{1}y) = \frac{t^{3}y}{2} + t^{2} \cos y - \frac{y^{2}}{2} + C \\ 4 \text{ . Solution: } t^{3}y + t^{2} \cos y - \frac{y^{2}}{2} = C \int (t^{3} - t^{2} \sin y - y) dy = t^{3}y + t^{2} \cos y - \frac{y^{2}}{2} = -2 \\ t^{3}y + t^{2} \cos y - \frac{y^{2}}{2} = -2 \end{array}$$