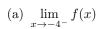
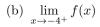
Session 1: Sections 1-1 and 1-2

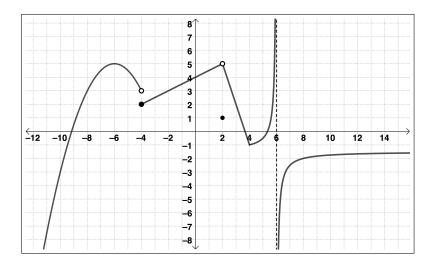
The notation $\lim_{x\to c} f(x)$ (for a real number c) means we need to find the value f(x) approaches when x is near, but not necessarily equal to c. The function must approach the same value (i.e., L) from both the left and right side of x=c for $\lim_{x\to c} f(x)=L$

1. A graph of f(x) is given below. Use the graph to find each limit below. If a limit does not exist, state so and use limit notation to describe any infinite behavior.





(f)
$$\lim_{x \to 6} f(x)$$



- 2. Given $f(x) = \frac{5(x+3)}{x^2 + 5x + 6}$, complete the tables below and then use the table to estimate the given limits
 - (a) $\lim_{x \to -3} f(x)$

ieit-nand iimit		right-hand limit		
x	f(x)	x	f(x)	
-3.1		-2.9		
-3.01		-2.99		
-3.001		-2.999		
-3.0001		-2.9999		

(b) $\lim_{x \to -2} f(x)$

left-hand limit			right-hand limit		
	x	f(x)	x	f(x)	

Direct Substitution Property For Polynomial and Rational Functions

If P and Q are polynomials and c is any real number, then

$$\lim_{x \to c} P(x) = P(c) \qquad \text{ and } \qquad \lim_{x \to c} \frac{P(x)}{Q(x)} = \frac{P(c)}{Q(c)}$$

as long as Q(c) is nonzero.

Cases for a Ratio of Two Functions

Given two functions f(x) and g(x), and any real number c, use the cases below when finding $\lim_{x\to c} \frac{f(x)}{g(x)}$.

• Case 1: (L is any real number and $M \neq 0$)

If
$$\lim_{x \to c} f(x) = L$$
 and $\lim_{x \to c} g(x) = M$, then $\lim_{x \to c} \frac{f(x)}{g(x)} = \frac{L}{M}$.

• Case 2

If
$$\lim_{x\to c} f(x) \neq 0$$
 and $\lim_{x\to c} g(x) = 0$, then $\lim_{x\to c} \frac{f(x)}{g(x)}$ does not exist.

• Case 3

If $\lim_{x\to c} f(x) = 0$ and $\lim_{x\to c} g(x) = 0$, then $\lim_{x\to c} \frac{f(x)}{g(x)}$ cannot be determined (i.e., is indeterminate) and further algebraic manipulation is necessary to convert the limit to an expression in which Case 1 or Case 2 applies.

3. Given h(x) below, find the following limits algebraically, check your results graphically.

$$h(x) = \begin{cases} 2x + 10 & x \le -7 \\ \frac{3x - 8}{4 - x} & -7 < x < 1 \\ \frac{2x^2 + x - 3}{x^2 - 5x + 4} & x \ge 1 \end{cases}$$

(a) $\lim_{x \to 1} h(x)$

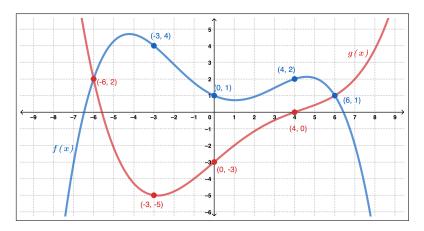
$$h(x) = \begin{cases} 2x + 10 & x \le -7 \\ \frac{3x - 8}{4 - x} & -7 < x < 1 \\ \frac{2x^2 + x - 3}{x^2 - 5x + 4} & x \ge 1 \end{cases}$$

(b) $\lim_{x \to 4} h(x)$

(c) $\lim_{x \to -7^-} h(x)$

(d) $\lim_{x\to 0} h(x)$

4. Given the graph of f(x) and g(x) below find $\lim_{x\to -3} \left(2f(x) + \frac{g(x)}{x^2} + 8\right)$.



5. Find the limits below algebraically.

(a)
$$\lim_{x \to -5} [\ln(6+x) - 2x]$$

(b) $\lim_{x \to 4} \frac{x^2 - 8}{x + 4}$

(c)
$$\lim_{x \to 4} \frac{x-4}{x+4}$$

(d)
$$\lim_{x \to 4} \frac{x+4}{x-4}$$

(e)
$$\lim_{x \to 1^{-}} \frac{\frac{8}{x+5} - \frac{4}{x+2}}{x-1}$$

(f)
$$\lim_{x \to -1/2} f(x)$$
 given $f(x) = \begin{cases} \frac{2x^2 - 3x - 2}{2x + 1} & x < -\frac{1}{2} \\ 2x + 7 & x > -\frac{1}{2} \end{cases}$