Math 251/221

WEEK in REVIEW 11.

Fall 2024

- 1. Find the local extrema/saddle points for $f(x, y) = x^3 3x + 3xy^2$
- 2. Find the absolute maximum and minimum values of the function $f(x, y) = x^2 + 2xy + 3y^2$ over the set D, where D is the closed triangular region with vertices (-1, 1), (2, 1), and (-1, -2).
- 3. Find the gradient vector field of the function $f(x, y, z) = xy^2 yz^3$.
- 4. Evaluate the line integral $\int_C x^3 z ds$ if C is given by $x = 2 \sin t$, y = t, $z = 2 \cos t$, $0 \le t \le \pi/2$.
- 5. Evaluate $\int_C y dx + z dy + x dz$ if C consists of the line segments from (0,0,0) to (1,1,2) and from (1,1,2) to (3,1,4).
- 6. Evaluate $\int_C \mathbf{F} \cdot d\mathbf{r}$ where $\mathbf{F}(x, y) = x^2 y \mathbf{i} + e^y \mathbf{j}$ and C is given by $\mathbf{r}(t) = t^2 \mathbf{i} t^3 \mathbf{j}, 0 \le t \le 1$.
- 7. Show that $\mathbf{F}(x, y) = (2x + y^2 + 3x^2y)\mathbf{i} + (2xy + x^3 + 3y^2)\mathbf{j}$ is conservative vector field. Use this fact to evaluate $\int_C \mathbf{F} \cdot d\mathbf{r}$ if C is the arc of the curve $y = x \sin x$ from (0,0) to $(\pi, 0)$.
- 8. Show that $\mathbf{F}(x, y, z) = yz(2x+y)\mathbf{i} + xz(x+2y)\mathbf{j} + xy(x+y)\mathbf{k}$ is conservative vector field. Use this fact to evaluate $\int_C \mathbf{F} \cdot d\mathbf{r}$ if C is given by $\mathbf{r}(t) = (1+t)\mathbf{i} + (1+2t^2)\mathbf{j} + (1+3t^3)\mathbf{k}, \ 0 \le t \le 1$.
- 9. Given the line integral $I = \oint_C 4x^2y \, dx (2+x) \, dy$ where C consists of the line segment from (0,0) to (2,-2), the line segment from (2,-2) to (2,4), and the part of the parabola $y = x^2$ from (2,4) to (0,0). Use Green's theorem to **evaluate** the given integral and **sketch** the curve C indicating the **positive direction**.
- 10. Find curl **F** and div **F** if $\mathbf{F} = x^2 z \mathbf{i} + 2x \sin y \mathbf{j} + 2z \cos y \mathbf{k}$
- 11. Find the area of the surface with parametric equations $x = u^2$, y = uv, $z = \frac{1}{2}v^2$, $0 \le u \le 1$, $0 \le v \le 2$.
- 12. Find the area of the part of the paraboloid $z = x^2 + y^2$ that lies inside the cylinder $x^2 + y^2 = 4$.
- 13. Find the mass of a thin funnel in the shape of a cone $z = \sqrt{x^2 + y^2}$, $1 \le z \le 4$ if its density function is $\rho(x, y, z) = 10 z$.
- 14. Evaluate $\iint_S xy \, dS$ if S is the boundary of the region enclosed by the cylinder $x^2 + z^2 = 1$ and the planes y = 0 and x + y = 2.
- 15. Evaluate $\iint_S yz \, dS$ if S is the surface given by $\mathbf{r}(u, v) = \langle uv, u + v, u v \rangle, u^2 + v^2 \le 1.$
- 16. Evaluate $\iint_{S} \mathbf{F} \cdot d\mathbf{S}$, if
 - (a) $\mathbf{F}(x, y, z) = \langle x^2y, -3xy^2, 4y^3 \rangle$ and S is the part of the elliptic paraboloid $z = x^2 + y^2 9$ that lies below the rectangle $0 \le x \le 2, 0 \le y \le 1$ and has downward orientation.
 - (b) $\mathbf{F}(x, y, z) = \langle x, y, 5 \rangle$ and S is the boundary of the region enclosed by the cylinder $x^2 + z^2 = 1$ and the planes y = 0 and x + y = 2.
- 17. Use Stokes' Theorem to evaluate $\oint_C \mathbf{F} \cdot d\mathbf{r}$ where $\mathbf{F}(x, y, z) = \langle 3z, 5x, -2y \rangle$ and C is the ellipse in which the plane z = y + 3 intersects the cylinder $x^2 + y^2 = 4$, with positive orientation as viewed from above.

- 18. Use Stokes' Theorem to evaluate $\iint_{S} \operatorname{curl}(\mathbf{F}) \cdot d\mathbf{S}$ for the vector field $\mathbf{F}(x, y, z) = \langle ze^y, x \cos y, xz \sin y \rangle$ and the hemisphere $y = \sqrt{4 x^2 z^2}$ oriented in the direction of the positive y-axis.
- 19. Use the Divergence Theorem to find the flux of the vector field $\mathbf{F} = \langle x, y, 1 \rangle$ across the surface S which is the boundary of the region enclosed by the cylinder $y^2 + z^2 = 1$ and the planes x = 0 and x + y = 5.