Math 140: Week-IN-REVIEW 8 (CHAPTER 5.2) 
$$*a_0$$
 any real #  
 $f(x) = q_0 x + \cdots + a_1 x + a_0$   $*n = 0, 1, 2, \cdots$   
non-negative integer

1. Determine if the given function is a polynomial function. If the answer is yes, state the degree, leading term, leading coefficient, and constant term.

(a) 
$$f(x) = 5x^{-1} - 7^{x} + 12x^{2.6} \times \text{not a polynomial}$$
  
\*  $5x \rightarrow \text{negative power}$   
\*  $7^{x} \rightarrow \text{variable power}$   
\*  $12x \rightarrow \text{power not a positive integer}$   
(b)  $g(r) = 9^{8} + \sqrt[3]{10}r^{2} - 4r^{3} + \frac{3}{4}r$  / polynomial  
\* degree : 3  
\* leading term:  $-4r$   
\* leading coefficient :  $-4$   
\* constant term :  $9^{8} = 4304.672$ 

2. Describe the end behavior of each polynomial function. Draw a quick sketch of the end behavior.



Copyright © 2024 Shelvean Kapita

3. Describe the end behavior symbolically for the polynomial function, f(x), graphed below.



(b) 
$$g(r) = 15r^3 - r^4 + 5r^2 - 120$$
  
Domain:  $(-\infty, \infty)$  since  $g(r)$  is a polynomial

Math 140 - Spring 2024 WEEK-IN-REVIEW

**TEXAS A&M UNIVERSITY** Math Learning Center

A M

5. Determine all exact real zeros, the x-intercept(s), and y-intercept of each given polynomial function, if possible.

2)

(a) 
$$f(x) = 7(3x + 4)(7 - 5x)$$
  
y-intrcept:  $(0, f(0)) = (0, 196)$   
 $f(0) = 7(3 \cdot 0 + 4)(7 - 5 \cdot 0)$   
 $= 7 \cdot 4 \cdot 7$   
 $= 196$ 

 $\frac{X - intercepts}{(0, 0), (-\frac{3}{2}, 0), (2, 0)}$ 

Real zeros: Solve 
$$f(x) = 0$$
 for x  
 $7(3x+4)(7-5x)=0$   
 $\Rightarrow 7=0 \times 3x+4=0 \Rightarrow \frac{3x}{3} = -\frac{4}{3} \Rightarrow x = -\frac{4}{3} \times 7-5x = 0 \Rightarrow -5x = -7 \Rightarrow x = \frac{7}{5}$ 

$$\frac{\text{Real } 2\text{eros} : \text{Solve } g(x) = 0 \text{ for } x}{5x(2x+3)(x-2) = 0}$$

$$* 5x = 0 \Rightarrow x = 0$$

$$* 2x+3 = 0 \Rightarrow 2x = -3 \Rightarrow x = -3 = 2$$

$$* x - 2 = 0 \Rightarrow x = 2$$

(c) 
$$h(r) = 5r^2 - r^3 + 4r - 20$$
  
y-intrcept: (0, h(o)) = (0, -20)  
 $h(o) = 5 \cdot 0^2 - 0^3 + 4 \cdot 0 - 20$   
 $mm$   
Real zeros: \* factor \*  
 $h(r) = 5r^2 - r^3 + 4r - 20$   
 $= -r^3 + 5r^2 + 4r - 20$ 

$$x - intercepts$$
  
(5,0), (-2,0), (2,0)

$$-intercepts$$
  
,0], (-2,0), (2,0)

= 
$$(r-5)(4-r^2)$$
  
Solve  $h(r) = 0$  for  $r$ :  
 $(r-5)(4-r^2)=0 \Rightarrow r-5=0 \Rightarrow r=5$   
 $4-r^2=0 \Rightarrow (2-r)(2+r)=0$   
 $= \sum (r-1)(2+r)=0$ 

 $= -r^{2}(r-5) + 4(r-5)$ 

(d) 
$$k(x) = (x^2 + 5)(x^2 - 9)$$
  
 $y - intrrept : (0, k(o)) = (0, -4.5)$   
 $k(o) = (2+5)(2-9) = (5)(-9) = -4.5$   
 $feel zeros : Solve k(x) = 0 for x$   
 $(x^2 + 5)(x^2 - 9) = 0 = x^2 + 5 = 0 = x^2 = -5 \times \text{ no real solns}$ 

$$x^2-q=0 \Rightarrow x^2=q \Rightarrow x=\pm 3$$

TEXAS A&M UNIVERSITY Math Learning Center

A M

47

4

6. Determine the vertex, axis of symmetry, domain, range, x-intercept(s), y-intercept, maximum value and minimum value for each quadratic function, if they exist. \* general form

(a) 
$$f(x) = 3x^2 + 9x$$
  
Vertex:  $(h, k) = (-\frac{b}{2a}, 5(-\frac{b}{2a}))$ ,  $h = -\frac{q}{2\cdot 3} = -\frac{q}{6} = -\frac{3}{2}$ ,  $k = 3(-\frac{q}{2}) + q(-\frac{3}{2}) = -\frac{27}{4}$   
Axis of symmetry:  $X = -\frac{3}{2}$   
Domain:  $(-\infty, \infty)$  polynomial  
Range:  $[-\frac{27}{4}, \infty)$   
 $y = -\frac{23}{4}$   
 $x = 3x(x+3) = 0 \Rightarrow 3x = 0 \Rightarrow x = 0$   
 $x + 3 = 0 \Rightarrow x = -3$   
 $x - ints$ :  $(0, 0)$  and  $(-3, 0)$   
(b)  $g(x) = 4x^2 - 3x + 1$   
Vertex:  $x = -\frac{b}{2a} = -\frac{(-3)}{2} - \frac{3}{2}$ ,  $y = g(\frac{3}{8}) = 4(\frac{3}{8})^2 - 3(\frac{3}{8}) + 1 = \frac{7}{16}$   
 $(\frac{3}{8}, \frac{7}{16})$   
Domains:  $(-\infty, \infty)$  polynomial  
this of symmetry:  $[X = \frac{3}{8}]$   
Range:  $[-\frac{7}{16}, \infty]$   
Max: none  
 $Min: \frac{y = \frac{7}{16}$   
 $Max: none$   
 $Min: \frac{y = \frac{7}{16}$   
 $Max: none$   
 $Min: \frac{y = \frac{7}{16}$   
 $Min: \frac{y = \frac{7}{16}$   
 $Min: \frac{y = \frac{7}{16}$ 

$$\begin{array}{rcl} \chi = & -5 \pm 10^{\circ} + 410^{\circ} \equiv -10^{\circ} 5 \pm 10^{\circ} + 10^{\circ} + 10^{\circ} + 10^{\circ} \\ \hline 2q & 2.4 & 7 & 10^{\circ} \\ \hline 8 & 2.4 & 7 & 10^{\circ} \\ \hline 8 & 10^{\circ} \pm 10^{\circ} + 10^{\circ} \pm 10^{\circ} \\ \hline 8 & 8 & 8 \end{array}$$

Copyright  $\bigodot$  2024 Shelvean Kapita

Math 140 WIR 8: Page 4 of 10

TEXAS A&M UNIVERSITY Math Learning Center

Ă Ň

•

(c) 
$$h(x) = 16 - 25x^2 = -25x^2 + 0x + 16$$
  
Vertex:  $x = -\frac{10}{24} = 0$ ;  $y = 16 - 25 \cdot 0 = 16$   
(0,16)  
Axis of symmetry:  $|X = 0$  (y-axis)  
Real zeros:  $16 - 25x^2 = 0$   
\* factor or use  $(4 - 5x)(4 + 5x) = 0$   
 $4 + 5x = 0 \Rightarrow \frac{4}{4} = \frac{5x}{5} \Rightarrow \frac{4}{5} = x$   
(d)  $j(x) = 5x^2 - \frac{17}{2}x + \frac{3}{2}$   
Vertex:  $x = -(-\frac{12}{2}) = \frac{17}{2} \cdot \frac{1}{10} = \frac{17}{20}$ ,  $y = 5(\frac{12}{20})^2 - \frac{17}{2}(\frac{17}{20}) + \frac{3}{2} = -\frac{169}{80}$   
 $4 + 5x = 0 \Rightarrow \frac{4}{4} = \frac{5x}{5} \Rightarrow \frac{4}{5} = x$   
(d)  $j(x) = 5x^2 - \frac{17}{2}x + \frac{3}{2}$   
Vertex:  $x = -(-\frac{12}{2}) = \frac{17}{2} \cdot \frac{1}{10} = \frac{17}{20}$ ,  $y = 5(\frac{12}{20})^2 - \frac{17}{2}(\frac{17}{20}) + \frac{3}{2} = -\frac{169}{80}$   
 $x = \frac{17}{2} \pm \sqrt{(\frac{17}{2})^2 - (\frac{1}{2})(5)(\frac{2}{2})} = \frac{17}{2} \pm \sqrt{\frac{164}{4}} = \frac{17}{2} \pm \frac{12}{2} = \frac{15}{10}$ ,  $\frac{2}{10} = \frac{3}{2}, \frac{1}{5}$   
 $x = \frac{17}{2} \pm \sqrt{(\frac{17}{2})^2 - (\frac{1}{2})(5)(\frac{2}{2})} = \frac{17}{2} \pm \sqrt{\frac{164}{4}} = \frac{17}{2} \pm \frac{12}{2} = \frac{15}{10}$ ,  $\frac{2}{10} = \frac{3}{2}, \frac{1}{5}$   
 $x = \frac{17}{2} \pm \sqrt{(\frac{17}{2})^2 - (\frac{1}{2})(5)(\frac{2}{2})} = \frac{2}{2} + \frac{4(52)}{2} - 20(52) + 25 = 0$   
 $10$   
 $10$   
 $10$   
 $10$   
 $10$   
 $10$   
 $10$   
 $10$   
 $10$   
 $10$   
 $10$   
 $10$   
 $10$   
 $10$   
 $10$   
 $10$   
 $10$   
 $10$   
 $10$   
 $10$   
 $10$   
 $10$   
 $10$   
 $10$   
 $10$   
 $10$   
 $10$   
 $10$   
 $10$   
 $10$   
 $10$   
 $10$   
 $10$   
 $10$   
 $10$   
 $10$   
 $10$   
 $10$   
 $10$   
 $10$   
 $10$   
 $10$   
 $10$   
 $10$   
 $10$   
 $10$   
 $10$   
 $10$   
 $10$   
 $10$   
 $10$   
 $10$   
 $10$   
 $10$   
 $10$   
 $10$   
 $10$   
 $10$   
 $10$   
 $10$   
 $10$   
 $10$   
 $10$   
 $10$   
 $10$   
 $10$   
 $10$   
 $10$   
 $10$   
 $10$   
 $10$   
 $10$   
 $10$   
 $10$   
 $10$   
 $10$   
 $10$   
 $10$   
 $10$   
 $10$   
 $10$   
 $10$   
 $10$   
 $10$   
 $10$   
 $10$   
 $10$   
 $10$   
 $10$   
 $10$   
 $10$   
 $10$   
 $10$   
 $10$   
 $10$   
 $10$   
 $10$   
 $10$   
 $10$   
 $10$   
 $10$   
 $10$   
 $10$   
 $10$   
 $10$   
 $10$   
 $10$   
 $10$   
 $10$   
 $10$   
 $10$   
 $10$   
 $10$   
 $10$   
 $10$   
 $10$   
 $10$   
 $10$   
 $10$   
 $10$   
 $10$   
 $10$   
 $10$   
 $10$   
 $10$   
 $10$   
 $10$   
 $10$   
 $10$   
 $10$   
 $10$   
 $10$   
 $10$   
 $10$   
 $10$   
 $10$   
 $10$   
 $10$   
 $10$   
 $10$   
 $10$   
 $10$   
 $10$   
 $10$   
 $10$   
 $10$   
 $10$   
 $10$   
 $10$   
 $10$   
 $10$   
 $10$   
 $10$   
 $10$   
 $10$   
 $10$   
 $10$   
 $10$   
 $10$   
 $10$   
 $10$   
 $10$   
 $10$   
 $10$   
 $10$   
 $10$ 

Copyright  $\bigodot$  2024 Shelvean Kapita

Math 140 WIR 8: Page 5 of 10

A M

- (f) Graph the quadratic function with the following properties
  - i. As  $x \to -\infty$ ,  $f(x) \to -\infty$  and as  $x \to \infty$ ,  $h(x) \to -\infty$
  - ii. f(x) has real zeros at x = -1, 5.
  - iii. There is a maximum value of 9.
  - iv. The graph has a y-intercept of (0, 5).



max revenue

max R(x)

- 7. Use the given revenue function, R(x), and cost function, C(x), where x is the number of items made and sold, to determine each of the following. Assume both revenue and cost are given in dollars.
  - i. The number of items sold when revenue is maximized.
  - ii. The maximum revenue.
  - iii. The number of items sold when profit is maximized.
  - iv. The maximum profit.
  - v. The break-even quantity/quantities.

(a) 
$$R(x) = -0.5x^2 + 100x$$
 and  $C(x) = 40x + 1600$ 

(i) 
$$X = -\frac{b}{2a} = -\frac{100}{2(-0.5)} - \frac{100}{1} = 100$$
 items

 $(i0 R(100) = -0.5(100^{2}) + (100)(100) = (0.5)(100^{2}) = (35000)$ 

$$(iii) P(x) = R(x) - C(x) = -0.5x^{2} + 100x - 40x - 1600$$
$$= -0.5x^{2} + 60x - 1600$$

\* find x to maximize profit \*  

$$x = -\frac{b}{2a} = -\frac{60}{2(-0.5)} = \frac{60}{1} = \frac{60}{160} \text{ items}$$

$$(iv) P(60) = -0.5(60^{2}) + 60(60) - 1600$$

$$= 0.5(60^2) - 1600$$
$$= 1800 - 1600$$

(v) 
$$P(x) = 0$$
 at break-even pnts  
 $X = -60 \pm \sqrt{60^2 - (4)(-0.5)(-1600)} = \frac{-60 \pm 20}{-1}$   
 $2(-0.5)$   
 $= 60 \pm 20$   
 $= 80, 40$  × break-even

A M

Use the given revenue function, R(x), and cost function, C(x), where x is the number of items made and sold, to determine each of the following. Assume both revenue and cost are given in dollars.

- i. The number of items sold when revenue is maximized.
- ii. The maximum revenue.
- iii. The number of items sold when profit is maximized.
- iv. The maximum profit.
- v. The break-even quantity/quantities.

(b) 
$$R(x) = -4x^2 + 300x$$
 and  $C(x) = 28x + 500$ 

(i) 
$$x = -\frac{300}{2(-4)} = \frac{300}{8} = \frac{37.5}{87.5}$$
 \* round to se if item is a whole  
(ii)  $R(37.5) = -4(37.5)^{2} + 300(37.5) = \frac{45625}{1}$   
(iii)  $P(x) = R(x) - C(x) = -4x^{2} + 300x - 28x - 500$   
 $= -4x^{2} + 272x - 500$   
\* to maximize profit \*  
 $x = -\frac{b}{2a} = -\frac{272}{2(-4)} = \frac{272}{8} = 34$  items  
(iv)  $P(34) = -4(34^{2}) + 272(34) - 500 = \frac{4}{8} + 124$   
(v)  $P(x) = 0$   
 $-4x^{2} + 272x - 500 = 0$   
 $x = -272 \pm \sqrt{272^{2} - (4)(-4)(-500)}$   
 $2(-4)$   
X  $\approx 1.8908$  or  $x \approx 66.109$  \* round off if item is  
a whole  
 $X = 2$  or  $X = 66$  \* approximate break-even  
guantities

- 8. The demand function for a calculator is given by  $p(x) = -\frac{1}{20}x + 100$  where p(x) is the price in dollars. The fixed costs are \$1,280 and the variable costs are \$80 per calculator made.
  - (a) Determine the cost, revenue and profit as functions of the number of calculators made and

sold.  

$$C(x) = 80 x + 1280$$

$$R(x) = p x = (-\frac{1}{20} x + 100) x$$

$$= -\frac{1}{20} x^{2} + 100 x$$

$$P(x) = R(x) - C(x) = -\frac{1}{20} x^{2} + 100 x - 80 x - 1280$$

$$P(x) = -\frac{1}{20} x^{2} + 20 x - 1280$$
(b) How many calculators must be sold to maximize profit?

$$X = \frac{-20}{(2 \cdot \frac{-1}{20})} = \frac{20}{(\frac{1}{10})} = (20)(10) = 200$$

\* 200 calculators must be sold to maximize profit

(c) What is the maximum profit?

$$P(206) = -\frac{1}{20}(200)^{2} + 20(200) - 1280$$
$$= 3720$$

9. The cost of manufacturing collectible bobble head figurines is given by C(x) = 30x + 350, where x is the number of collectible bobble head figurines produced. If each figurine has a price-demand function of p(x) = -1.2x + 360, in dollars, determine

(a) the company's profit function. 
$$R(z) = pz - (-1.2z + 360)z - -1.2z + 360z$$

$$P(x) = R(x) - C(x)$$
  
= -1.2x<sup>2</sup>+360x - 30x - 350

$$P(x) = -1.2x^{2} + 330x - 350$$

(b) how many figurines must be sold in order to maximize revenue?

$$X = -\frac{360}{(2)(-1.2)} = \frac{360}{2.4} = 150$$

\* 150 figurines must be sold to maximize revenue \*

(c) how many figurines must be sold in order to <u>maximize profit</u>?

$$X = -\frac{330}{(2)(-1,2)} = \frac{330}{2\cdot 4} = 137.5 * round up to 138 *$$

\* Approximately 138 figurines must be sold to maximize profit

(d) at what price per figurine will the maximum profit be achieved?

$$p(138) = -1.2(138) + 360 = 4194.40$$