2.3: MODELING WITH FIRST ORDER ODES

Review

e |f fis proportional to g, then it means
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Exercise 1

Suppose we initially have 3 rabbits. After 2 years, we have 14 rabbits. Assuming
the population growth of the rabbits is proportional to the number of rabbits, how
many rabbits will we have in 3 more years?
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Exercise 2

Suppose we invest ST100 per month in a savings account that makes 5% inter-
est compounded continuously. Initially, we have nothing in the savings account.
How much money will be in the account after 8 years?
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Exercise 3

Suppose we have a 200 L tank filled with water. We start pouring sugar water
into the tank at a rate of 3L/min. The sugar water contains 5 g/L of sugar. At the
same time, the well-mixed fluid flows out of the tank at a rate of 3L/min. How
much sugar is in the tank after 1hr?

SZIL) = jVﬂKS ot Svév in Fle ﬁule
t; 4ie [.,.,;l.m‘es>

73{":‘5—;,38
A3




200
-3t
]§-3-§ = Z=rc — 3t

TS = ce™ —1[$

3t 3*
Slt) = ce ™ + =3 =ce ~ (000

S(D\ - Ca,a Apoo =0 = C = —(oCO

-3¢t
S\ = —1poo e >*°

S—

(600D

—42
5/6&:'/000& *° ¢ loov ij




Exercise 4

Suppose we leave a bucket of ice cream out on the counter in a 70 °F room. The
ice cream was initially 15 °F. However, after T minute of sitting there, it's tem-
perature is 20 °F. How long until the ice cream starts to melt? (Assume that
the ice cream obeys Newton's law of cooling: The rate at which the tempera-
ture changes is proportional to the temperature difference of the object and its

surroundings.)
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2.4 EXISTENCE AND UNIQUENESS OF SOLUTIONS

Review

e A solution exists if
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e A solution is unique if
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e Theorem for linear ODEs: If P awl 4 4ve eodivwas on an interval
I = (a,b) containing the initial condition ¥, then the initial value problem
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has a unique solution on 1.

: . 0 . .
¢ Theorem for nonlinear ODEs: et the functions f and a—f be continuous in
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unigue solution to the initial value problem
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Exercise 5
Without solving the IVP, determine where a unique solution is guaranteed to exist.

y — tan(t)y = Vit + 1, y(0) = 2m.
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Exercise 6
Without solving the IVP, determine where a unique solution is guaranteed to exist.

cos(z) f — 4z f = In(1 + ), f(m)=T.
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Exercise 7
Consider the differential equation

y' = (z+y)""

If the initial condition is y(2) = —2, does the IVP have a unique solution? What if
the initial condition is y(1) = 27 \7

y T
'p(x,ﬁ = (x-ty) ’
I ) -
:,’7 = ‘3/’“'7 . >
C |
3 {s<+'7)2/3 \7:‘)(

C‘lu“/ [I.av; )(1-7 =0

Y=-x

u/(«u‘ +LL IC 1 7/2\)7‘2) Wwe Lave Lo 1dea
;_(f \'Kvl—-t 'y 4 u.laifke. €o(a7‘~0|_. o M-t°

( )
l’vl‘"& ~H«’. IC D) 7{/) =7 e Lave «

btw'Zut 5.(«,“-‘“« o L* [iqs'z Sole Qu,‘Z/ ;.,,;‘vae(.

_




Exercise 8
Consider the initial value problem

y' = 2;:_ T y(0) =€ A

Why does the existence and unigueness theorem not apply to this IVP? Show
that this IVP has more than one solution.
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2.5: AUTONOMOUS EQUATIONS

Review

e A differential equation is autonomous if
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¢ An equilibrium solution to a differential equation is
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¢ The stability of an equilibrium solution can be any of the following:
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Exercise 9
Are the following autonomous or not?
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Given the following slope field, determine the equilibrium solutions and their sta-

bility. Also, draw the phase line diagram.
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Exercise 11
Suppose the population of armadillos is governed by the equation

da — 1000A — A2
dt

What are the equilibrium solutions? Interpret them physically. What is the stabil-
ity of each equilibrium solution? Interpret this physically.
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Exercise 12

Given the phase line diagram, sketch the corresponding slope field. Draw some
representative solutions on the slope field for different initial conditions. Also,
determine the stability of each equilibrium point.
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